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Interacting Laterally Patterned Magnetic Structures
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Results:Results:
�The interdot interaction has a strong destabilizing effect on the vortex spin state.
�The interdot distance normalized to dot radius is found to be a key parameter  that determines the strength of the coupling.
�In truncated chain of interacting dots, the magnetization reversal is initiated from the chain edges due to the symmetry breaking.
�The interaction effects account for the coherent vortex chirality in neighboring dots.

Future Directions:Future Directions:
�Exploring the inter-dot interaction effects in vertically organized dots and patterned multi-layers.
�Inter-particle interaction for generation and propagation of magneto-static spin waves.
�Role of the interaction effects in damping phenomena in high density magnetic recording media.

Sub-µµµµm  ferromagnetic dot arrays

Recent interest in magnetic systems with reduced
dimensions has been stimulated by the rapid evolution of
various nano-fabrication techniques. In particular, it
enables us to fabricate well-defined 2D arrays of sub-
micron ferromagnetic particles (dots). This offers various
opportunities to test new concepts of spintronic devices,
such as magnetic random access memory (MRAM), high-
density patterned recording media, or ultra-small magnetic
field sensors. Prior to the technological applications
mentioned above, it is indispensable to understand
fundamental properties, such as switching fields,
susceptibility, spin dynamics and interdot interaction of the
magnetic elements with reduced dimensions.

Magneto-statically coupled dot arrays
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Magnetostatic interaction affects the nucleation and annihilation fields, as well as the
initial susceptibility (the data are shown for dot array with 2R= 0.6 µµµµm, and L= 60).

Universal scaling f interacting effects

The experimental results clearly show that the i nterdot distance normalized to dot radius
can be used as a key parameter to determine the strength of the interdot coupling.
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Normalized interdot distance, δ=d/R 
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Magnetic Vortex State 

Magnetization reversal due to formation of the magnetic vortex state in circular dot

Micromagnetic calculations: hysteresis loop and
field-evolution of the vortex spin structure
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Experiments: hysteresis loop and MFM
observation of the vortex state in remanence

Magnetic flux

MFM Tip

Shape effect on interdot coupling

The interdot coupling appear to be independent on the shape of the dots.
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Modeling of interdot dipolar interactionModeling of interdot dipolar interaction
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Notations: d is the interdot distance in units of dot radius R,  β=L/R is the dot aspect ratio, interdot
dipolar field Hd is in units of Ms, indexes “1” and “c” correspond to the edge and central dot, respectively.
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Chain of interacting square particles 

In chain of square particles the vortices are formed only in remanence. The effect of
interdot interaction accounts for the coherent vortex chirality in neighboring elements.

in field

in remanence

Field-evolution of spin structure  and  calculated hysteresis loop MFM images
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Long-range magneto-static interaction

Effect of interdot coupling on magnetization reversal in truncated
dot chains depends on the number of interacting elements.
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Experimental MOKE loops

Motivation:
The magnetization reversal in an array of identical well-separated dots is mainly determined by the magnetic properties of the elements. Conversely,

the interdot interaction due to stray fields is important in determining the switching behavior for high-density arrays. In order to estimate how long-range
magnetostatic interaction varies across the patterned sample we have studied a model system of arrays of magneto-statically coupled dots with
magnetic vortex ground state.

Micro-fabrication

ZEP 520 Resist (5000 min-1 / 3 min; 180 C / 20 min)

PMGI Resist (5000 min-1 / 3min; 250 C / 30 min)

Exposed Areas

Double Layer Resist Spin-coating

EB Patterning (30-500 pA)

Resist Development

EB Deposition (1 A/sec) 
(FeNi target)

Lift-off process FeNi circular dot

Si substrate

Xylene 3-5 min +
15 sec rinsing

PMGI developer 5-10 min, + H2O rinsing

Methyl-Ethyl-Ketone (MEK , for ZEP520)
1-Methyl 2-Pyrolidone (for PMGI)

~ 200 nm

δ




