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Spin-flop Transition in Finite Antiferromagnetic
Superlattices

Background
• Interest in the 1st order spin-flop transition

in uniaxial bulk antiferromagnets (AFM)
originated when it was first predicted by L.
Néel in 1936. [1]

–Reorientation of AFM component
perpendicular to easy-axis and applied
field

–Finite magnetization along field

• Bulk spin flop transition experimentally
confirmed >30 years later. [2]

• Since then, theoreticians have estimated
the effect of the surface in a finite AFM.
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Predictions for finite size antiferromagnets
• In a finite AFM there is a surface spin-flop transition

at a field below the bulk spin-flop transition. [3]

• Spins near the surface rotate into a flopped state and
creating an AF domain wall.

• The wall penetrates through the system until it
reaches the center.

• The spin-flopped region expands throughout. [4]

•  Wall divides system in two (anti-phase) domains
separated by a “discommensuration.” [5]
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First Experimental Evidence [6]
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• An Fe/Cr(211) superlattice
was used as template for finite
uniaxial antiferromagnet

• Comparison between MOKE
and SQUID confirmed surface-
initiated spin-flop transition [6]

Polarized Neutron Reflectivity Results on a Fe/Cr superlattice
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Conclusions

• Basic theoretical description of surface spin-flop
transition confirmed experimentally with PNR.

–Initiation at surface

–Motion of domain wall into film and expansion

–Formation of anti-phase domains
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Ongoing research:
• Effect of the orientation of the applied field with

respect to the easy axis (_) on the (1st order) nature of
the SSF transition.

• The influence of the ratio of coupling strength versus
anisotropy.

• The SSF transition in a superlattice with perpendicular
anisotropy.

• The  spin flip and non-spin flip neutron
reflectivities were measured as a function of
applied field on POSYI at IPNS.

• After fitting, a detailed picture of the magnetic
orientation in each Fe layer was obtained
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