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Two electrons cannot tunnel simultaneously through a center because of Coulomb
repulsion at the center. Such a correlation in the resonance tunneling is revealed by
the magnetic field B. This correlation leads to a universal dependence of the
conductance, G(B) = G,F(u, B /T), of the tunnel junction which contains
quasilocal centers. '

The conductance of a tunnel junction with a thin, amorphous insulating layer at
low temperatures is a consequence of a resonant tunneling of electrons through quasi-
local states. At moderately small thickness d of the layer, this mechanism dominates
over the direct tunneling.! The distinctive feature of the resonance mechanism is the
fact that the wave function of the tunneling electron has a sharp peak in the region of
the quasilocal center. The Coulomb repulsion of electrons, which tunnel through one
center, in this case is appreciable: The simultaneous transmission of electrons with
opposite spins is suppressed. This circumstance is clearly seen in the plot of the con-
ductance of the junction as a function of the applied magnetic field B. The magnetic
impurities in a tunnel barrier can be described by using a Hamiltonian similar to the
Anderson Hamiltonian

- +
H = kEa €o%% 0% T z

+ + + +
2, €p0%6 Ipo t+Zeaja + Usjaa a.

a
o

*

+ 3 (Mol 0, + T agay,) + S (Tyd508, + Ty a0y} (1)
Here a;/, a,, anda, are the operators for the creation of an electron in the state with
a spin ¢ at the left edge and the right edge of the junction and in the impurity,
respectively; €;,, €,, and €, are the energies of the electron in these states, U is the
Coulomb repulsion energy, and T, and T, are the constants of hibridization of the
state at the center with the states at the edges. We assume that the Coulomb energy U
is reasonably large, U> T, I';, I',, where T is the temperature, and I", and I, are the
widths of the impurity level, which are associated with the tunneling at the left edge
and the right edge of the contact, respectivley., We also assume that 7>T'=1T, + T,
(otherwise, the Kondo effect would be appreciable’?). Because of the width of the
impurity level is small (I" € T), we were able to calculate the current in terms of the
impurity by using the Kkinetic equations for the average filling of the center
(n,Y =<{a} a,) and for the probability of a double filling of the center {n,n__):
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The terms with 8(¢, — €;,,,) correspond to the transitions between the states of the
zero-filled and singly filled centers and the terms with §(e, + U — €,,,,) correspond
to the transitions between the states of the singly and doubly filled centers. The distri-
bution functions f;, = f;(€,,). and f,, = f,(€,,) at the left edge and the right edge of
the contact are Fermi distributions. The difference in the corresponding Fermi levels,
E!. — E = eV, is determined by the voltage ¥ across the junction and is assumed to
be small in comparison with U. A resonant tunneling occurs only if the energy of the
electron at the center (€, or €, + U, depending on the filling) is close to the Fermi
level. Using the tunneling through broken bonds in an a-Si barrier as a guideline, we
assume" that |e, + U — E| ~T (the transitions between the singly and doubly filled
states are allowed). Since U> T, we have f;(€,) =f,(€,) = 1 and in the steady-state
regime it follows from Eqgs. (2) and (3) that

[fi(e, + UYSn_d=An n_ DTy + [f, (e, + U)¢n_ ) —(n n_ Y]T, =0, (4)
1—(na)—(n_a)+(non_a)=0. (5)
Here the level widths are defined by the relations

I, = ﬂ%lTklzﬁ(ea’* U-¢,), T, = 1r§|Tp|26(eo+ U~ €,,)

Equation (5) reflects the fact that the probability of the zero-fold filling of the impuri-
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ty {((1—n,)(1 —n_,)) is zero. The solution of Egs. (4) and (5) is
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Substituting the solutions of (6) and (7) into the expression for the current given in
terms of the impurity

I= e);anpa = 2eFr§((nan_a> -fe,+U)(n_,)).

we find
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As was noted above, we will consider the effects associated with the external magnetic
field applied to the sample These effects are implicitly incorporated in Egs. (1)- (8) in
terms of the quantity €,
€, = € + 201,B, o=*1/2 , 9)

[}

where ¢, is the energy of the impurity state at B = 0. We have ignored the magnetic-
field-related change in the orbital states of the electron at the edges and at the center.
This is justifiable in the case of “dirty” edges (w.7<€1, where w, is the cyclotron
frequency, and 7 is the mean-free time) and localized states with a small radius a

(a<\chi/eB; in a-Si the radius a5 10 A).
In the absence of a magnetic field we have €, =€_, =€, v, =v__,=v, and
Eq. (8) can be rewritten in a simplified form
LT, fi(eo+ U)—f (€ + U).

I = 4e 4 10
I13=0 r 2—v (103)

An additional dependence on the occupation numbers at the edges, which appears in
the denominator of Eq. (10), stems from the Coulomb interaction of electrons at the
center. (In the absence of interaction we have /= 4e(I',T",/T) [fi(€) = f,(&)])-
Coulomb correlations give rise, in particular, to the dependence of the saturation
current, expressed in terms of a single center with I', #T',, on the polarity of the
applied voltage:

I, = 4e\T, /(T +21), 1I_=4el}l/(T, +2I}).

In experiments with tunneling metal-oxide-semiconductor structures® peaks
which are associated with the tunneling of electrons through individual resonance
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centers can be observed on the plot of the linear conductance of the contact G as a
function of E.. Analysis of Eqgs. (8) and (10) shows that the width of the peak of
G(Eg) in our case is 7. At B = 0 the peak of G(Ey) is asymmetric. With an increase
in the field B, the peak does not split® but instead shifts toward larger values of E;- and
at g B> T it becomes symmetrical, while the peak’s tip is situated at the point
E. =¢€y+ U+ pgB. the peak’s height is G, =4(y2 — 1)%(e¥/#)[,[",/TT when
B =0 and with an increase in the field, it decreases to G = (1/2)(e?/#®)T, T ,/T'T
when 5 B> T. The change in the peak’s height, G,/G_ = 1.37, is thus universal and
does not depend on the parameters of the mixture I'; and I',. The inequality G, /
G, < 1 is the result of the “freezing out” of spin-flip tunneling processes in a strong
field.

In experiments with tunnel junctions containing an amorphous semiconductor
layer' the barrier usually contains many impurities, and so characteristics averaged
over the impurity coordinates and energies are of interest. Taking an average over G,
we note that I';,, «exp( — 2z,,,/a) depends exponentially on the position z of the
impurity relative to the edges (a is the radius of the impurity state). As a result, we

find
2
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Here g is the density of the impurity states at the Fermi level, and I'y cexp( — d /a) is
the level width at z = d /2. The plot of G vs B is universal in nature in the same way as
(12); G(O)/G( ) = 1.39. The differential conductance (—?V(B) = dI /dV manifests
similar universality at eV> T:

Gy(B) = G(=)F, Fylx) = 1 for x>1

~ ~ (2;133) V2 for x< 1
ev /'’

We wish to emphasize that the dependences G(B) and G, (B), which are attributable
to the Coulomb correlations, vanish at U = 0.

We note in conclusion that the variation of the magnetic field in the region B> T/
Mg is equivalent to the variation of the Fermi level and that it causes a change in the
arrangement of the resonance centers. As a result, mesoscopic fluctuations can be
observed at the junction with a constant value of E.

We wish to thank A. I. Larkin and A. B. Fowler for useful discussions.

YAll these results can easily be extended to the case |€ — E.|~ T by substituting in (1) the hole operators
for the electron operators.
21n the absence of a Coulomb correlation (U = 0) we would have an ordinary Zeeman splitting of the peak.
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