PHYSICAL REVIEW B

VOLUME 52, NUMBER 7

15 AUGUST 1995-1

Theory of hopping magnetoresistance induced by Zeeman splitting

K. A. Matveev
Massachusetts Institute of Technology, 12-105, Cambridge, Massachusetts 02139

L. I. Glazman and Penny Clarke
Theoretical Physics Institute and Department of Physics, University of Minnesota, Minneapolis, Minnesota 55455

D. Ephron and M. R. Beasley
Department of Applied Physics, Stanford University, Stanford, California 94305
(Received 29 December 1994)

We present a study of hopping conductivity for a system of sites that can be occupied by
more than one electron. At a moderate on-site Coulomb repulsion, the coexistence of sites with
occupation numbers 0, 1, and 2 results in an exponential dependence of the Mott conductivity upon
Zeeman splitting ppH. We show that the conductivity behaves as Ino = (T/To)/*F(z), where F'
is a universal scaling function of z = upH/T(To/T)'/*. We find F(z) analytically at weak fields,
z < 1, using a perturbative approach. Above some threshold z¢n, the function F(z) attains a
constant value, which is also found analytically. The full shape of the scaling function is determined
numerically, from a simulation of the corresponding “two-color” dimensionless percolation problem.
In addition, we develop an approximate method which enables us to solve this percolation problem
analytically at any magnetic field. This method gives a satisfactory extrapolation of the function

F(z) between its two limiting forms.

I. INTRODUCTION

Low-temperature conductivity in a disordered semi-
conductor is controlled by phonon-assisted electron hops
between localized states. At sufficiently low tempera-
tures, only those sites that have energy levels close to the
Fermi level participate in the hopping transport. This
defines the Mott variable range hopping (VRH) regime.!
Mott conductivity depends exponentially on tempera-
ture, o(T) « exp[—(To/T)* 4], where Ty = B4/ga®
is the characteristic Mott temperature, g is the density
of localized states at the Fermi level, a is the localiza-
tion radius for a single site, d is the dimensionality of the
sample, and the numerical factor 84 is determined by
percolation theory.2 In the more standard case of lightly
doped semiconductors, the strip of localized states in en-
ergy space is relatively narrow, and each site can accom-
modate at most one electron. Under these conditions,
the spin degree of freedom of the hopping electrons has
no effect upon the exponential factor of the hopping con-
ductivity. The application of a magnetic field H results
in the modification of this exponential factor due solely
to the orbital effect of the field.?

Kamimura et al.® recognized that the spin degree of
freedom plays a significant role in the magnetoresistance
if a certain fraction of the sites can accommodate more
than one electron. Double occupancy is possible if the on-
site Coulomb repulsion U between the electrons is smaller
than the width of the distribution function of the energies
of the localized sites. In this case, there are two types of
sites that contribute to hopping transport. Sites of the
first type, which we will call type A, have energies € close
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to u. Sites of type B have one electron at a deep level
with € ~ p—U, so that the energy for the second electron
is close to . The sites that are neither type A nor type
B have energy levels that are too far from the Fermi
level to contribute to transport. At zero magnetic field,
the probability for two electrons on two singly occupied
sites to have opposite spins equals 1/2. Therefore, hops
between A and B sites can occur. In the strong field
limit, however, all spins are polarized, and A «+> B hops
are completely suppressed,® assuming that two electrons
occupying the same site form a singlet state at all relevant
magnetic fields.* Thus, at sufficiently strong magnetic
fields, the characteristic Mott temperature is determined
by the larger of the two densities of states g4 and gp
rather than by the net density of states g = ga + gB.
The increase in Ty due to the field-induced suppression of
A < B hops leads to a giant positive magnetoresistance.®
In this paper we present a detailed study of the hop-
ping magnetoresistance induced by Zeeman splitting. We
show that the criterion for the strong magnetic field limit
described above corresponds to a finite threshold value
H,. Below this threshold value, the conventional Mott
exponent, (To/T)Y/ (441 is modified by a factor F(z),

ool (T r@\ (1)
(7)

which is a universal function of a single scaling parameter

oo HBH ()
© T (To/T)V/@+D

The universality of the Zeeman splitting induced magne-
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toresistance is a key result of this paper. Its significance
is illuminated by noting that it reduces the calculation of
the magnetoresistance to the determination of a univer-
sal function F(z) of a single dimensionless parameter z,
as opposed to previous solutions® for which the magne-
toresistance was calculated as a function of two variables,
T and H.

Above a certain threshold = > z,, the universal func-
tion F(z) attains a constant value, which we determine
analytically. In addition to the saturation value, we find
the z <« 1 asymptote of F(z) analytically using a per-
turbative approach. In an attempt to obtain an analyt-
ically determined fitting curve for the universal scaling
function F(z), we extend the invariant technique? to the
case of the “two-color” percolation problem. To deter-
mine the accuracy of these two analytical techniques, we
find the scaling function F'(z) numerically by simulations
of the corresponding two-color dimensionless percolation
problem and compare it with the functions obtained an-
alytically.

II. APPLICABILITY OF THE MODEL

Zeeman splitting can make the dominant contribution
to the magnetoresistance in a number of important cases,
which include those of undoped amorphous silicon3% and
moderately disordered two-dimensional electron systems.
In the latter case, the minima of the random potential
may serve as sites accommodating several electrons. The
orbital effect can be avoided altogether if the field H
is applied parallel to the plane of the two-dimensional
system. In amorphous silicon, electrons are localized at
“dangling bonds.”” For the case of bulk a-Si, the orbital
effects of the magnetic field cannot be eliminated, and
Zeeman splitting makes the dominant contribution to the
magnetoresistance only in a certain range of tempera-
tures. To determine this range, we consider the tunneling
of an electron a distance L through a barrier consisting
of the superposition of an “intrinsic,” Vp, and a “mag-
netic,” mw?2z?/2, barrier. (w. = eH/mc is the cyclotron
frequency of the field H.) The action for the electron
subbarrier motion is

S _1 1. 2 2 L aL3®
= ﬁ/\/Zm(Vo+ smw2e?)de ~ ;+W' 3)

The localization radius of the electron in the absence of
a magnetic field is related to the strength of the intrinsic
barrier Vp as a = A/+/2mVy, and A = y/ch/eH is the
magnetic length. The second term in Eq. (3) represents
the correction to the subbarrier action due to the pres-
ence of a magnetic field. From Eq. (3), we see that the

orbital effect of the magnetic field is negligible at
alL?
TV 1.
ox < )

The characteristic tunneling distance L in the VRH
regime is, of course, determined by the temperature
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Tp\ /@D
L~ — . 5
«(2) )
Equations (4) and (5) determine the upper limit of the
magnetic field. Requiring the Zeeman splitting to be
strong limits the magnetic field from below:

\/Eﬁz T 3/2(d+1)
T H< — | = . 6
KB < 2ma? (To) (6)
This relation places the restriction
12 2(d+1)/(2d—1)
T < To (m—azTo) (7)

upon the range of temperatures at which Zeeman split-
ting makes the dominant contribution to the magnetore-
sistance.

III. DERIVATION OF THE CONNECTIVITY
CONDITIONS

Mott’s arguments enable one to find the temperature
dependence of the exponential factor in VRH conductiv-
ity. However, it is necessary to use percolation theory
to determine the numerical factor B4 in the exponent.?
Similarly, to study quantitatively the effect of Zeeman
splitting upon the conductivity, one has to reformulate
the problem in terms of percolation theory. Because two
different site types are now involved, the percolation net-
work that determines the hopping conductivity consists
of three types of links: AA, BB, and AB. In order to
find the VRH conductivity, we must first determine the
conductances G44, Gpp, and G4p of the three types of
elementary links. To begin with, we introduce the prob-
abilities P; of having the site ¢ occupied by zero (0), one
(1 or ), or two (1) electrons:

Pi(0) = 27, (8)
Py(1) = 2" exp[—(&; + usH)/T), 9)
Pi(}) = 2" expl—(e; — upH)/T), (10)
Pi(t}) = 27" exp[—(26: + U)/T}- (11)

Here

Z =1+ exp[— (€ + ppH)] + exp[—(e; — upH)]
+ exp[—(2¢; + U)/T]. (12)

Neglecting the preexponential factors (which include,
e.g., the deformation potential constant), we can express
the three elementary link conductances as products of
phonon and electron occupation numbers:

Gaa o [Py(T) + P1({)]P2(0)N(e2 — €1) exp(—2R/a),
(13)

Gpp x Pi(11)[P:(1) + P2(1)]N(e2 — €1) exp(—2R/a),
(14)
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Gap x [Pi(1)P2(1) + Pr({)P2(1)]N(e2 + U — €4)
x exp(—2R/a). (15)

Here R is the distance between two sites and N is the
Bose distribution function.

The standard approach to the formulation of the per-
colation problem requires the exponential representation
of the elementary link conductance, G o« e~ ¢. In this
colored percolation problem, there are three different ex-
ponents {44, £BB, and 4B, which are extracted from
Egs. (13)—(15). Assuming that the on-site Coulomb in-
teraction is very strong U > upH > T, we find

_le—eal+la—ppH|+|e2 — ppH| 4 2B

§aa T =, (16)
tpp = le2 —€1| + e + U + ppH| + |e2 + U + pupH|
2T
5 (17)
€ap = |€2+U—E1|+l€1—g;H|+|ez+U+uBH|
+H;—H+%. (18)

The energies €; and €z in Eq. (18) correspond to the
energy levels of sites of type A and B, respectively.
The Fermi level depends upon magnetic field due to
transitions from doubly to singly occupied sites, du =
pH (9B — ga)/(g9a + gB). However, this has no effect
upon the resistance, provided that g4 and gp are energy
independent for energies on the order of ugH. Unlike
the case of semiconductors doped by shallow impurities,?
in amorphous silicon the densities of states are indepen-
dent of energy on this scale, since they vary with energies
comparable to the on-site Coulomb interaction U ~ 100
meV.8 Therefore, we can safely make the assumption of
constant densities of states in the vicinity of the Fermi
level. ’

Instead of the energies ¢;, it is convenient to introduce
a new set of variables ¢;, chosen in such a way that their
values are close to zero for sites participating in electron
transport:

€ =€ — upH for A sites,

(19)
€ =€+ U + ppH for B sites.
We further define
€g —€1 —2upH| + |leq| + |e
en(m = 2= Bl lal bl g )

2

The new variables simplify the dimensionless exponents
(16)—(18) to the forms

€aa=¢BB = 612;0) + %, (21)
§aB= 5”7@ + %. (22)

In the absence of a magnetic field, 44 = BB = &aB,
and we return to the standard percolation problem for
VRH conductivity. At H = 0 only the net density of

states g = g4 + gp at the Fermi level is relevant, and the
ratio of the densities of states ga/gp does not affect the
conductivity.

IV. MAGNETORESISTANCE IN THE LIMITS
OF WEAK AND STRONG FIELDS

A. Strong field limit

As follows from Eq. (22), the exponent £4p cannot
be smaller than 2ugH/T. Thus, at sufficiently strong
magnetic fields the transitions between sites A and B
cannot occur.® In this limit, the conductivity is deter-
mined by two parallel percolation networks, one of which
consists only of type A sites and the other of only type
B sites. Therefore, the conductivity is independent of
H and satisfies Mott’s law with the density of states
g = max{ga,gn}. This picture is valid above a certain
threshold for the magnetic field

T -
H>Ha =5 b (23)

when all possible £ 45 exceed the critical exponent . de-
termined by the percolation theory solution of the VRH
problem,?

Ba 5. (24)

, To=—Pi
®” (9a+gB)a

z [(QA + 98)To

1/(d+1)
gc = §T ]

B. Weak field limit

The opposite limit of weak fields also allows for an-
alytical consideration by means of a perturbative ap-
proach applied to the percolation problem with the den-
sity of states ¢ = g4 + g and the percolation thresh-
old & = (Tp/T)Y/(@+1). At H <« H, possible field-
induced variations of £4p5 are small, Alsp < £2. This
enables us to use the perturbative approach proposed in
Ref. 2. According to Ref. 2, one can find the small
shift of the percolation threshold £, as an average incre-
ment of { caused by the small perturbation, A, = (Af).
To calculate the average (AE) over the statistical en-
semble of sites, one needs to find the correction A¢ to
the exponent for each link due to a small magnetic field.
Clearly, Afsa = Aépp = 0, whereas A€sp = 2ugH/T
if 1 > €3, and A4p = 0 otherwise, see Egs. (21) and
(22). Taking into account the fraction of AB links with
€1 > &2 in the percolation cluster gags/(g9a4 + gB)2, we
find

2949 uBH

A=) = latap? T

(25)
The dependence of the hopping conductivity upon the
critical exponent £, is 0 ~ e~¢. Therefore, Eq. (25)
enables us to find the dependence of the conductivity on
the magnetic field:

o(T,H) _ 2949 uBH

In (T, 0) ———(gA+gB)2 T (26)
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This dependence is sensitive to the relative densities of
A and B sites. As expected, there is no field dependence
at ga =0 or gg =0.

The region of validity of (26) is determined by the ap-
plicability of the perturbative approach, i.e., by the re-
quirement Aap < £2. In terms of the magnetic field
strength, this condition reads upH < upHy, ~ TE°.
Since £ > 1, the latter condition does not contradict
our initial assumption that ug H > T. More precise lim-
its of applicability of the perturbative calculation become
apparent from the comparison of Eq. (26) with the re-
sults of numerical simulation, which we present later in
this paper.

V. SCALING ANALYSIS
A. Scaling conjecture
It is worth noting that the dimensionless parameter of

the perturbation theory is

_ p#BH _ psH (27)
= TE0 = T(To/T) @

The threshold field Hyy, corresponds to the universal (i.e.,
temperature independent) value of this parameter,

1 (gA +op ) 1/(d+1)
Tth= 5 | /= .
2 g

The existence of the dimensionless parameter x allowed
us to make the conjecture (1), which corresponds to the
following scaling behavior of the percolation threshold:
&(T,H) = €2F(z). This scaling function F(z) deter-
mines the conductivity at finite magnetic fields

From the cases of low and high fields discussed above, we
already know the limiting behavior of the function F'(z).
It has linear expansion at small  and reaches a constant
value at large x:

1+ %az atr K1
F(z) = ton\ 1/(@4D) (29)
(QAT“—> at £ > Tin.

B. Proof of the scaling conjecture

We will now prove our conjecture (1) and (2) by re-
ducing the initial problem of hopping magnetoresistance
to a dimensionless percolation problem.

We start from the conventional percolation approach
to the hopping conductivity and introduce a positive vari-
able £. At given &, all links are cut except for those with
conductance G > e~¢. At small £, percolation does not
occur, but at some particular value £ = £, the network
starts to percolate. This threshold value determines the
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conductivity ¢ ~ e~¢. Our goal is to find the depen-
dence of £, on T and H. We generalize the approach of
Ref. 2 and introduce a set of dimensionless variables A,
p, and x defined by the following relations:

1
e=TEA, R=zalp, ppH =TEx. (30)

In these variables the connectivity condition for a link is

A12(0) + p <1 for AA and BB links,

Ai12(x) +p <1 for AB links, (31)

where

_ 81+ 82|+ A1 — Az — 2X]

Aig2(x) B

+ X-

Clearly, only sites with the dimensionless energies |A| < 1
can be connected. The dimensionless concentration of
these sites in p space is ’

1 .
n=sry(9at gp)a’Tedr!, (32)

We are now in a position to formulate the dimensionless
percolation problem associated with the hopping magne-
toresistance problem. Consider a random distribution of
points with concentration n in a d-dimensional p space.
Each point is characterized by its type (A or B), radius-
vector p;, and energy A;. The latter is distributed uni-
formly over the interval (—1,1). Two points form a link
if the condition (31) is satisfied. The problem is char-
acterized by two dimensionless parameters: the ratio v
of concentrations of A and B points, and dimensionless
magnetic field x. Aty = ga/gB, this dimensionless prob-
lem is equivalent to the original percolation problem for
the hopping magnetoresistance. To reach the percolation
threshold, we increase the total dimensionless concentra-
tion n (holding « constant) until the critical value n.(x)
is reached. Omnce n.(x) is found, we can determine the
threshold . for the original problem from the relation
(32), which can be rewritten as

ne(x)/ne(0) = (€/€2)"F1. (33)

Rewriting x as defined by .Eq. (30) in terms of the param-
eter = [see Eq. (27)] we find that £, must be a solution
of the following equation:

no(e€0/6:) _ (ﬁc)d“_ (34)

nc(0) @

One can easily show that this equation has exactly one
solution. Then it obviously has the form

€e = E2F (2). (35)
This proves our scaling conjecture (1) and (2).

VI. SIMULATION

As was previously mentioned, the accuracy of the per-
turbative approach used at small z, see Eq. (29), can only
be determined by comparison with simulation data. In
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addition, there is an intermediate range of field strengths
within which F(z) must be numerically determined, as
the analytical theory does not extend to this range. To
perform these tasks, we developed a code, which closely
resembles that of Skal and Shklovskii.® We will describe
the method as applied in two dimensions. The simulation
consists of the following: N sites are randomly thrown in
an I x | box (which is large enough for the system to be
well below the percolation threshold for the given value
of N). Each of these sites is randomly assigned a site
type, A or B, and an energy A. Two sites are connected
if their parameters satisfy the condition (31). Percola-
tion is said to occur when two strips (one at each end
of the box), of width equal to the average distance be-
tween sites, are connected. We start with I > [.(x), and
make [ smaller until this connection occurs. This deter-
mines the percolation threshold I.(x). The critical site
concentration is n.(x) = N/I2(x).

We ran the simulation at v = 1 and at vy = 1/2 on 3600
sites and averaged each point over 100 runs. One can see
from the data shown in Fig. 1 that F(z) is an increasing

1.25 ————————
S22 .
120 F = . ]
801‘15 . y=1
=1.07 *
™ LIS g0 ° ]
R -0.03 007, 017
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FIG. 1. The universal function, F(z) for d = 2. The pro-
cedure for extracting F(z) and z from the simulation data
gives the standard errors 0.005 for F'(z) and less than 0.003
for z. Insets: normalized critical site concentration as a func-
tion of dimensionless magnetic field x. The standard error
of nc(x)/nc(0) is 0.01 on average. (a) v = 1; for z > z,
there is a systematic suppression of F(z) below its true value,
F(xen) = 1.26; inset: a linear fit to the data for x < 0.20
gave a slope of 1.47 + 0.03 in good agreement with the theo-
retically predicted value, 3/2. (b) v = 1/2; for £ > ztn, the
function F(z) attains its exact value, F(zyn) = 1.14; inset:
a linear fit to the data taken at x < 0.2 yielded a slope of
1.33 & 0.04 in good agreement with the value 4/3 following
from the perturbation approach.

monotonic function that attains a limiting value for = >
T¢n. Aty = 1, the limiting value of F'(z) is systematically
suppressed below the exact result given by Eq. (29).
This is an artifact of the simulation that occurs because
v = 1 corresponds to the same number of A and B sites.
For z > z, at v+ = 1, there are two parallel networks
that can percolate. Thus, for £ > =z}, the simulation
is in effect being run twice, once on the A network and
once on the B network, with the smaller value of the
two resulting concentrations selected. Clearly, this finite
size effect does not exist at any other value of v. The
simulation data of Fig. 1 used in conjunction with the
scaling functional form (1) yields the magnetoresistance
for v =1 and v = 1/2 at arbitrary fields.

In order to determine the range of our small z asymp-
totic form, we replotted the data as critical site concen-
tration n. vs x and found that n.(x) begins to deviate
from being linear in x for x 2 0.20. Weighted linear
fits to the data yielded the zero field values n.(0) =
7.064 £+ 0.023 at v = 1 and n.(0) = 7.036 &+ 0.031 at
~4 = 1/2 both of which are in good agreement with the ac-
cepted value of 6.940.4.° To test the accuracy of our weak
field perturbative approach, we performed a weighted lin-
ear fit to the data taken at and below x = 0.20. As one
can see from the insets in Figs. 1(a) and 1(b), the fits to
the simulation data yielded slopes and intercepts, which
were in excellent agreement with those obtained pertur-
batively at both vy =1 and v = 1/2.

VII. APPROXIMATE INVARIANT
FOR THE PERCOLATION PROBLEM

Ideally we would like to know the scaling function F'(z)
for any value of v. However, the simulations used to de-
termine F'(z) for each value of y require a large amount
of computer time. Thus, we only found F(z) for two
values of gamma: v = 1 and v = 1/2. The develop-
ment of an analytical method that yields an approximate
form of the scaling function F(z) is therefore highly de-
sirable. The invariant method developed by Shklovskii
and Efros? gives just such a simple approximate solution
of the VRH problem. Unfortunately, this approach can-
not be adapted to the case of the two-color percolation
problem. In this paper we suggest an alternative invari-
ant. This approach (i) gives a better estimate of the
constant Gy for the standard percolation problem, and
(ii) can be generalized to the two-color case. As it re-
duces the problem of determining the universal scaling
function F(z) to the solution of a simple integral equa-
tion, we have used it to obtain an analytically determined
fitting curve for the universal scaling function F'(xz). Re-
cently the same invariant conjecture was independently
proposed by Ioselevich.!®

A. Invariant approach to the standard VRH problem

We will first formulate our invariant conjecture as ap-
plied to the standard (single color, gg = 0) VRH prob-
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lem. At the percolation threshold (¢ = £.), the probabil-
ity density of finding a defect state with energy ¢, linked
to one with energy ¢; is

GAA(El,Ez) = /o(gc —£AA(51)52aT))ddr

= VdgA (%ﬁ)d (1 - MQ)d

T¢.

612(0)
x0 ({c T ) . (36)
Here vq = 2n%2/T'(d/2)d is the volume of a d-

dimensional sphere of unit radius. For the VRH problem,
the energies of the two sites are not fixed but rather are
governed by distribution functions. Therefore, the nor-
malized distribution of energies f;(e2) of sites, which can
be connected to a site in the system, is

T1f1(€2) Z/dEIGAA(ElaEZ)fO(El)

)

TE.

x0 (1 — Esz—g)) fo(e1)de.

Here fo(e1) is the distribution of energies of the first site;
the normalization coefficient Y; is the average number of
sites that can be directly linked to the first one (i.e., the
average number of bonds per site). Repeating the pro-
cedure of Eq. (37) several times, we find that the distri-
butions of site energies obtained in this manner converge
rapidly to the eigenfunction of the dimensionless integral
equation

37)

Aaf(Ag) = /[1 — Apa(0)]%0(1 — A1(0))F(A1)dA;.
(38)

We conjecture that this eigenfunction is approximately
equal to the distribution of energies for the sites in the
infinite cluster. The largest eigenvalue A4 is proportional
to Y, which would then be the average number of bonds
per site in the infinite cluster,

d
agc
T = /\dgAvd (—g—-) Tﬁc (39)
We further conjecture that Y is an invariant of the perco-
lation problem, and equals the average number of bonds
per site B, for the random sites (RS) problem.? With
]

r(2a) = (5,

guaranteeing that all of its eigenvalues are real.

We now extend the method of invariants to the two-
color percolation problem and conjecture that the max-
imal eigenvalue T is independent of the magnetic field.

Y Gaa(er,e2)

Y~ Y2G 4B (e1,€2) ) (hA(el) )
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this assumption, we obtain

nRS
_ c
Ad = 2nv—ﬁﬁ’ (40)
c
where n®S and nYRH are the critical concentrations of

the RS and VRH percolation problems.

A numerical solution of the integral equation (38) gives
A2 = 0.4301, A3 = 0.3154, and A4 = 0.2489, in excellent
agreement with the values given by Eq. (40), with n}S
and nYRH obtained via simulations of the corresponding
percolation problems Ay = 0.410 % 0.004, A3 = 0.303 +
0.004, and A4 = 0.232+0.005. The simulation procedures
we used to find n?S and nYRH are nearly identical to the
one described in Sec. VI and were run on N = 8100 sites
and averaged over 50 runs for d = 3 and d = 4 and on
N = 6400 and averaged over 100 runs for d = 2.

B. Generalization to the ‘“colored”
percolation problem

We shall now generalize the discussion of the previ-
ous section to the case of a two-color model, gg # 0.
The sites are now characterized by two parameters: a
continuous variable € and a discrete variable, A or B.
Consequently, instead of a single equation (38), we now
have a system of two integral equations:

() = [ (S ) Sarleves) )
()

Here, G 44(e1,€2) is given by Eq. (36). The off-diagonal
element G 4p(e1,€2) is the probability density of finding
a link between an A state with energy £; and a B state
with energy £;. It can be obtained from the probability
density Ga4 given by Eq. (36) by making the replace-
ment £12(0) = e12(H).

The kernel of this integral equation is not symmetric.
However, it can be symmetrized by performing a linear
transformation:

(2)=(55m) (h2)-

Clearly, this transformation preserves the eigenvalues. In
the new basis, the integral equation (41) attains a sym-
metric form

(41)

(42)

(43)

f
Let us show that by assuming the invariance of T, we re-

cover the results of the weak field perturbative approach
described in Sec. IV B. First, we solve Eq. (43) at H = 0,
for which G 4B(e1,€2) = Gaa(e1,€2). One can easily see
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that the normalized solution corresponding to the maxi-
mal eigenvalue has the form

ha(e1) 1 Y12
0) = = .
o= (ha)) = 2= (77 ) s
Here the function f(g) is defined as the normalized solu-
tion of the “monochromatic” integral equation

(44)

Aof(e2) = /GAA(€1,€2)f(61)d51, (45)

corresponding to the maximal possible eigenvalue Ag.

As we apply a small magnetic field H, the percola-
tion threshold &, shifts away from its zero field value, £2.
However, according to our conjecture, the eigenvalue T
remains constant. To first order in ugpH and 6., the
correction to Y is simply 6T = (0/6G|0), in complete
analogy with first-order perturbation theory in quantum
mechanics. Thus, the field-induced correction to T is
given by the following relation:

/
1+Ay/f52 Y5D

<5GAA(E1,62) y~Y25G ap(e1,€2) )
Y7Y28G ap(e2,61) Y 6G aa(E1,E2)

1/2
X (’]T )f(El)d€1d€2. (46)
The condition 6T = 0 may be rewritten in the form
[ 10 + 416G anter,e) + 1[G an(er )
+5GAB(€2,61)]}f(€1)d€1d€2 =0. (47)

This equation enables one to find the magnetic field-
induced correction to £2, since

ha(A2) ) _ [1— A12(0)]?0(1 — A12(0))
A ( hs(A2) ) / ( Y V21— An ()] 0(1 - Az (x))

Here, the eigenvalue )\, is related to T by Eq. (39). For
the two-color problem, Ay = A4(X,7), and the invari-
ance conjecture is equivalent to the assumption that the
product Ag(x,7)[€c(x, )] is independent of both the
magnetic field and the ratio v of the two densities of
states. Therefore, using Eq. (39), the universal scaling
function F(z) = &.(T, H)/£° can be expressed in terms
of the eigenvalue Ag,

[ 2a(0,0) 1/(d+1)
- [/\d(Xa'Y)] ' (54)

Formula (54) expresses F' in terms of x = upH/TE,,
instead of ¢ = ug H/T¢°. Noting that z/x = £./€2 = F
we find

YL = A21(0)]10(1 — Az (0))
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Ganteren) = G (£ - 220, (48)
Ganlenen) = G (£ - 2570). (49)

To first order in 6¢; and upH, the condition §YT = 0 (47)
may be rewritten as

[#ensene (50 E”(O)) {«ssc(l )2

_ E I(e12 + €21)
T OH

d61d€2 =0. (50)
H=0

From the definition (20) of €12(H), one finds

3H [e12(H) + e21(H)] = 2pp. (51)

Using Egs. (50) and (51), we recover the result of the
perturbative approach:

v 2upH
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06 =

To consider the case of arbitrarily strong magnetic
fields, we change to the dimensionless variables A; and
A, and, in doing so, reduce the integral eigenvalue equa-
tion to a dimensionless form, which can then be solved
numerically:

12[1 - Ap(x)140(1 - Au(x))) (h (2 3) dA,.
B

(53)

' . [M] 1/(d+1) (55)

/\d(Xa’Y)

Equations (54) and (55) determine F'(z) in parametric
form.

In order to assess the validity of the invariant approach,
we solved Eq. (53) numerically at the two values of v used
in Sec. VI, v =1 and 1/2, over the entire relevant range
of dimensionless magnetic fields. The resulting plots of
F(z) are shown in Figs. 2(a) and 2(b) together with the
two plots obtained via simulations. Let us first examine
the two curves obtained for v = 1/2 [Fig. 2(a)]. It is
clear that at weak fields the invariant method yields an
accurate approximation of the universal scaling function
F(z) at v = 1/2. In addition, we see that at v = 1/2
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FIG. 2. The approximate scaling function F(x) obtained
via the invariant approach, for d = 2, shown with the corre-
sponding curves extracted from simulations. (a) v = 1; the
analytically derived scaling function reproduces the simula-
tion results only at very small values of z. The difference
in the limiting values of the two curves can be attributed
to the finite size effect, described earlier, which is present in
simulations run at v = 1. In addition, this finite size effect
broadens the range of the scaling variable z, within which
the two curves differ substantially. (b) v = 1/2; for ¢ < z¢n
and ¢ > zn, the function F(z) obtained via the invariant ap-
proach is in good agreement with the numerically determined
function. Within a large range of intermediate values of the
scaling variable z, however, the two functions differ by more
than 0.005, the standard error of the numerically determined

F(x).

this approach gives the proper limiting value of F(z). At
intermediate fields, the function F'(z) obtained from the
invariant method continues smoothly between its limiting
forms, deviating from the corresponding values of F'(x)
obtained from simulations by at most 2%.

Upon examination of the two curves in Fig. 2(b), it
is equally clear that at v = 1 the invariant method ac-
curately reproduces the scaling function F(z) at small
fields. This method gives the proper limiting value of
F(x) at v = 1 which, however, is higher than the corre-
sponding simulation value by approximately 1.5%. This
disagreement can be attributed to the systematic sup-
pression of F'(x) at large = due to certain finite size effects
in the simulations run at v = 1 (see Sec. VI). The func-
tion F(z) obtained from the invariant method smoothly
continues between its limiting forms, differing from the
corresponding values of F'(z) obtained from simulations
by at most 6%. We believe that the magnitude of this
discrepancy between the scaling functions, determined by
simulations and the invariant method, at intermediate
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fields is considerably enhanced by the above mentioned
finite size effects in simulations run at v = 1.

We should point out that for the values of F(z) ob-
tained from the simulations, the standard error in F(x)
is approximately 0.005. Thus, at v = 1/2 there is a
wide range of intermediate fields within which the dif-
ference between the numerically and analytically deter-
mined scaling functions is larger than the standard error.
For v = 1, the two curves differ by more than the stan-
dard error for £ > 0.05. Thus, the invariant method does
not suffice to accurately determine the universal scal-
ing function F(z). We see two possible reasons for this
shortcoming: the first being that this procedure might
not yield information about the infinite cluster and the
second being the possibility that the average number of
bonds per site, for sites belonging to the infinite clus-
ter, is not an invariant of the dimensionless percolation
problem. These questions are the subject of future work.

VIII. CONCLUSION

In this paper, we considered the problem of hopping
magnetoresistance induced by Zeeman splitting. The
problem has been reduced to the calculation of a uni-
versal function F(z) of a single dimensionless parameter
z (which depends upon magnetic field and temperature).
To find F(z), one has to solve a certain dimensionless
two-color percolation problem. We found the limiting
behavior of F'(z) analytically and obtained its full shape
numerically for two values of the ratio g4a/gp = 1 and
ga/9s = 1/2. In addition, we developed an approximate
method, which enables us to solve the two-color percola-
tion problem analytically at any . This approach gives
a satisfactory extrapolation of the function F(z) between
its two limiting forms.

This theory can be applied to any system of localized
electrons for which the width of the distribution function
of the energies of the localized states is larger than the
on-site Coulomb repulsion energy. Bulk amorphous sili-
con satisfies this condition.®® In the bulk (d = 3), there
exists a range of temperatures (7) within which Zeeman
splitting makes the dominant contribution to the magne-
toresistance. As was proposed in Ref. 8, this theory can
then be used to probe the relative concentration of singly
and doubly occupied sites that contribute to transport.
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