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Coulomb blockade of tunneling through a double quantum dot
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We study the Coulomb blockade of tunneling through a double quantum dot. The temperature dependence
of the linear conductance is strongly affected by the interdot tunneling. As the tunneling grows, a crossover
from temperature-independent peak conductance to a power-law suppression of conductance at low tempera-
tures is predicted. This suppression is a manifestation of the Anderson orthogonality catastrophe associated
with the charge redistribution between the dots, which accompanies the tunneling of an electron into a dot. We
find analytically the shapes of the Coulomb blockade peaks in conductance as a function of gate voltage.
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. INTRODUCTION GG, xe(Vq—Vy)IT

G= . - .

Electron tunneling in a mesoscopic structure may be sig- 2(Gi+6Gy) sinf{xe(Vg=Vg)/T]
nificantly affected by charging effects. The charging sup-HereG, , are the conductances of the weak links connecting
presses tunneling if the charge spreading is impeded by weake dot to the leads.
links or by a special geometry of the structure. Such a sup- In a number of recent experimerftal and theo-
pression of tunneling is commonly referred to as the CoureticaP**~'*papers tunneling through two coupled quantum
lomb blockade; for a review see Ref. 1. In recentdots was explored. In particular, by using a double-dot struc-
experimentdit has become possible to observe the Coulomlture one can probe the quantum charge fluctuations more
blockade in semiconductor heterostructures where the geongirectly than in a single dét>'® Here we focus on the ge-
etry of the system can be easily modified by adjusting theometry of Ref. 4, shown schematically in Fig. 1, in which the
voltages on special gate electrodes. dependence of the peak positions on the conductéycef

A common example of the Coulomb blockade effect is athe constriction between the two dots was studied. We dis-
measurement of linear conductance between two macraeuss the theory of the peak positions in Sec. Il.&ggrows
scopic leads weakly coupled to a quantum de¥hen an  and approachese?/h, the peaks become equidistant, and in
electron tunnels from a lead to the dot, the electrostatic enthis respect the two-dot system behaves as a single dot of

(€©)

ergy of the system a larger size. It is clear, however, that unlike a large single
dot, the charge spreading between the two coupled dots

e’n? is impeded and takes a relatively long time

U=—Sg —«enY (1) {~c/G,~#(e?/C) L. The characteristic energy related to

changes; hereC is the capacitance of the dogn is its

charge V, is the gate voltage, and=C,/C is a dimension- VAV ZZA YV AV V.,
less geometrical factor that defines the gate capacitance
Cg- At low temperature§ < e?/2C, the equilibrium discrete
charge of the system is determined by the minimuntof 9DEG dot dot 9DEG
Tunneling of an electron into or out of the dot leads to a
large increase of the energy and conduction through the dot
is suppressed. However, at certain values of the gate voltage
the ellagctrostatic energy is degenerate, Vi W % Vo W % AL

U(n)=U(n+1), 2 FIG. 1. Schematic view of the double-quantum-dot system. The

o ) dots are formed by applying a negative voltage to the gates
and the Coulomb blockade is lifted. Therefore, the linearshadest the solid line shows the boundary of the 2D electron gas

conductance shows a series of peaks at the gate voltaggfEeG). v, andV, create tunnel barriers between the dots and the
Vg =(2n+1)e/l2C4. The heights and shapes of the peaksieads, whileV, controls the transmission coefficient through the
can be foundusing the master equation technique constriction connecting the dots.
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this time delayk/t is of the order of the charging energy, and  In the weak-tunneling cas&,<e? h, for a symmetric
one can expect it to affect the conductance through theystem\=a=0, the peaks are centered at the following
double-dot system and cause deviations from(Bg.Indeed, values of the gate voltagé:'*

in Sec. Ill we show that the slow propagation of charge

between the dots results in a suppression of the conductance . 1 N 1 1 Ec 2In2 hGy 6

peaks. The specific shape and temperature dependence of a =Nt =gt Ec\© @2 €] ®
conductance peak provides one with information about quan- . . .

tum fluctuations of charge between the two dots. wheren is any integer. The peak splitting, —X_ grows

linearly with G,. In agreement with the experimehfpr a
symmetric system, the peaks at small conducta@geare

Il. POSITIONS OF THE PEAKS doubly degeneratéassumingE= E, which is a good ap-
IN LINEAR CONDUCTANCE proximation for the experimeht

To discuss the Coulomb blockade, one has to introduce EVen @ small asymmetrg<1 lifts this degeneracy. In-
the electrostatic energy of the system shown in Fig. 1. In th&l€€d, the positions of the peaks@g—0 can be found from
experimertt the potentials of the dots were controlled by a (2 With the electrostatic energi) as the full energy. As a
single gate voltag¥, . Clearly, the equilibrium electrostatic result, we find the two sequences of peaks
energy is a function of three variables: the discrete charges of Nt 1/2 N+ 1/2
the two dotseN; andeN, and the gate voltag¥. It also A= I 7)
depends on the capacitances of the dots—to the gate, to the 1+al2 1-al2

external world, and to each other—which introduce five payyhere agaim is any integer. An asymmetry of the system
rameters into the problem. We will use the expression for the.5 ;seq by a nonzero in Eq. (4) also leads to the lifting of

electrostatic energy the degeneracy.

One can easily see that the peak positions given byAg.
U(N;,Ny)=Ec(N;+N,—2X)2 show periodic beats: near certain values of the gate voltage
- ) X the neighboring peaks come very close together—they are
+TEC[N1 =N+ A(Ny+Np) —aX]%,  (4) separated by a distance of order—while between those
values ofX the peaks are separated 8¢~ 1. The period of
whereX is a dimensionless variable proportionaMg. The  these beats ia 2. In the regions where the distance between
effective circuit we have in mind, the exact relation betweenthe neighboring peaks predicted by E@) is small, an ad-
X andVy, and expressions for the parametgss, Ec, \, ditional splitting due to the quantum charge fluctuations
and « in terms of the capacitances of the dots can be foundaused by finite interdot conductanGg should be taken
in Appendix A. into account. This additional peak splitting can be found in
We intentionally grouped the terms in E@) in such a  the same way as the splittir§) in the symmetric case. For
way that the energy depends on the total number of particleghe caseE.=E, the result issX= (In2/72)hG/€e?.
in the two dotsN; + N, and the relative chargl; —N5. In In the opposite case of strong coupling the properties of
this paper we assume that the coupling of the double-dohe system depend on the particular model of the junction
system to the leads is extremely wedk G, <G, and there-  petween the dots. For an electrostatically created constriction
fore one can neglect the quantum fluctuationslgf-N,. On  between the dots, a one-dimensioffD) model of the junc-
the other hand, the interdot conductar@gis not necessar- tion is the most appropriaté.In this case the conductance
ily small and atGy~e® h the fluctuations ofN;—N, are G, never exceedseé®/h, and the strong-tunneling case cor-
significant. The tunneling of the electron between the dotsesponds to a small reflection coefficient
lowers the ground-state energy of the system. Thus, to deteg =1 —hGy/2e?<1. We will concentrate on the asymmetric
mine the positions of the peaks in the linear conductance ongase >0, assuming for simplicityh=0, and derive the
should generalize Eq2) by replacing the electrostatic en- peak positionsx* from Eq. (5). At fixed N=N;+N, the

ergy U with the ground-state energy of the double-dot sys—electrostatic energgd) can be rewritten as
tem Ep(X) for a fixed total number of electrons

N=N;+N,. That is, the peak position§* are given by U\ (Ng) = Ec(N=2X)2+4E(N;— 7)?, (8)

where y= (N4 aX)/2. The second term on the right-hand
EMX®) =B 1(X*). ®)  side is expressed in terms of the number of particles in the
left dot. In the strong-tunneling ca$¢; is no longer quan-
Early attempts at the calculation of the peak positiondized, and atR—1 its average assumes the vali, )=,
were based on models allowing only a few discrete states ithus minimizing the electrostatic energy. In this limit one
each dot*2 Such an approach should provide an adequateasily findsE (X) = Ec(N—2X)? and the peaks are equidis-
description of the system in the case of extremely smaltantX*=(2n+1)/4.
quantum dots. In typical experimerts however, the num- At nonzeroR the average number of particles in the left
ber of states in each dot is large and a model with continuoudot (N;) is not precisely equal ta, but oscillates neary
spectra of electrons is more appropriate. The calculation ofvith period Ay=1. The corresponding small periodic con-
the ground-state energy for such a model in the limits oftribution to the ground-state energy was found in Ref. 16,
weak and strong coupling between the dots can be foundhere a single quantum dot connected to a large lead was
using the techniques developed in Refs. 15 and 16. considered. At temperatures exceeding the level spacings in
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both dots the two problems are equivalent and one can use 0.5
the result® for the periodic correction to the ground-state 6:
energy +
O 04
Ex(X)=Ec(N—-2X)? S
€ = 1 2 § 0.3
3 REcIn ReoZa(y) | o(y), () s
where C=0.57722 ... is Euler's constant andb(vy) is de- 2 09
fined as¢(y)= ¢+ my. In contrast to Ref. 16, we include 5 ’
here a shiftp, in the phasep(y) of the Coulomb blockade &
oscillations. Such a phase shift is always present, for in- § ol
stance, due to an asymmetry of the scattering potential in the 3
constriction connecting the dots. In the case of a single dot  §
connected to a large leHdthe presence o, is irrelevant, © 0.0
as it can always be compensated by an appropriate shift of -10 -8
the gate voltage. Similarly, in the case of a double-dot sys- Gate voltage X

tem the phase, can be incorporated in the definition Xf
as some shiffsee the definition ofy in Eq. (8)], unless the _ _ _ _
FIG. 2. Evolution of the split peaks with temperature described

system is completely symmetrie=0. ' )
. Eq.(11). The reference point for the gate voltage is chosen to be
One can now use the expression for the ground-state e%{* EQ* ))/2 and the geF\)te voltagegis plottegd i units of
ergy (9) to find the corrections to the equidistant peak posi-,,x i

tions caused by the weak scattering in the constriction. Fro X* —X*)/2. The peak splitting is observable at a sufficiently low
Eg. (5) we find ' emperaturg@= 4E./T=2.

the master-equation approach, identical to the one used in a

2n+1 4eCE. 1 h .
* 1y =Cphin=, single-dot casé.The resulting conductance has the form
X 7 +(—1) 3 ECRIchos(2¢O+ maX).
(10) _ GG 1
This result for the peak positions in the strong-tunneling re- Gi+Gr 24 AX-XD) 4 = BXL-X)

gime R<1 is a generalization of the results in Refs. 13 and
14 to the case of an asymmetric system. The asymmetry
gives rise to the cosine factor in EQL0). Similarly to the
regime of weak tunneling, in the asymmetric case the dis-
tance between the peaks shows beats, with the periot in where3=4E./T andX? are the positions of the two adja-
beinga 1. cent peaks given by E@6) with the samen. The two peaks
As we mentioned, the presence of even a weak asymmede resolved only at sufficiently low temperatures
try of the system destroys the periodicity of the peak posi-T<Eq(X* —X*), as shown explicitly in Fig. 2. The deriva-
tions and thus complicates the comparison of the experimertion of Eq.(11) is outlined in Appendix B.
tally observed peak splitting with the thedf/** One should In a symmetric device each state with an odd chaygs
note, however, that in both weak- and strong-tunneling casegloubly degenerate: the “odd” electron may be on either the
in the regions of the gate voltagéwhere the peak splitting left or right dot. In addition, at special values of gate voltage
assumes the smallest possible values, the distance betwege-X* | states with charge& and N+ 1 are degenerate. At
the neighboring peaks coincides with that predicted by thehese values oK, a charge can be transferred through the
theory***for the symmetric case. double-dot system via a sequence of real states. As a result,
In the next section we calculate the heights and shapes @he peak conductance is temperature independent.
the conductance peaks, whose positions are given by Egs. A small asymmetry changes the situation qualitatively. As
(6), (7), and(10), and compare the results with the availablewe saw in Sec. II, the presence of a nonzeror \ in the

B(X=X*) — B(XT—X)
ePX=XE) 1 @BX{-X)_q]’

11

experiments. electrostatic energ) lifts the degeneracy; i.e., if the state
with the odd electron on the left dot is in resonance, the state

. HEIGHTS AND SHAPES with it on the right dot is higher in energy by an amount

OF THE CONDUCTANCE PEAKS denotedA. If A is larger than the temperature, one can no

longer transfer charge through the double-dot system via real

states alone. Nevertheless, an electron can still escape from
We start our discussion of the heights and shapes of ththe left dot to the right lead via a virtual state in the right dot:

conductance peaks with the case of weak tunneling betweesuch a mechanism of tunneling is knowncasunneling® At

the dots, which means that the conductance of the constritemperatures exceeding the level spacing in the dot, inelastic

tion is small Go<e?/h. Nevertheless, we assume that thecotunneling dominate$:*° In this case an electron tunnels

coupling to the leads is even weaker,G,<G,. The results  from the left dot to the right one, and thamotherelectron

for the conductance depend on the symmetry of the systentunnels from the right dot to the right lead. After the process

In the symmetric case, one can find the conductance withiirs completed, the right dot is returned to the state with no

A. Weak tunneling between the dots
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extra charge, but an electron-hole pair is created in it. As a

result, the phase-space volume for such processes is propor- 1.0
tional to T? and so the conductance of the system is sup- 7 0.8F i
pressed at low temperatures. E
Let us find the height and shape of a conductance peak at >06- .
low temperature§ <A for a typical peak. At the value of £
the gate voltagex} =1/(2+ a) the energies of the states £ 04
with charge 0 and with extra chargeon the left dot are o 02
equal, whereas the energy of the state with charga the '
right dot isA=4aEc/(2+ «). (Here we assume that all the 0.0 Moo b il lwees o Wt

asymmetry is due tar>0, andA=0, Ec=E..) We first -5 0 « 5 10
calculate the rate of cotunneling of an electron from the left

dot to the right lead: FIG. 3. Conductance as a function of dimensionless gate voltage

1 2 L X in the asymmetric weak-coupling case. Note the correlation be-
=" pkisq N(1—n)ng(1—ny) tween the modulation of the peak height and the separation of ad-
T hkpgs| A P jacent peaks: when the peaks are high the splitting is small, while
X S €o et e €t (12) when the peaks are small they are well separated. The parameters
(ek—epteqmeste), used in Eqg. (17) to produce this plot aree=0.155 and

wheret,ts,/A is the second-order matrix element for the T/Ec=0.07.
transfer of an electron from staltein the left dot to stat in
the right dot and then the transfer of another electron from B. Perfect transmission between the dots

stateq in the right dot to state in the right leadn, 4.5y and .
expas are the corresponding Fermi occupation numbers In Sec. Il A we assumed that the coupling of the two dots

and energies, respectively. We also defined IS we_ak. This_enapled us to apply the stgndard master-
equation technique in the case of a symmetric system and to
e=U(1,0-U(0,0=2(2—a)Ec(X*—X). (13  account for the lowest-order cotunneling process in an asym-
metric double-dot device. In this section we consider the
A straightforward calculation now yields limit of strong tunneling, where simple perturbation theory is
not applicable. We define the strong-tunneling limit as the

2 2
— - W—fZGOGr I) w (14)  case of perfect transmission through the channel between the
7(e) 3e A 1-e dotsG,=2e?/h. To treat this limit, we apply a nonperturba-

Here we used the definition of the conductancelive approach based on the bosonized picture of the 1D trans-
,16,21
Go=(2me*h)=|t,|25(e) (e,) and a similar relation for Port through the channé?:

) We shall treat the double-dot system as a single conductor
One can now express the current through the system asof complicated shape. To find the conductance we will gen-

eralize the master-equation technique of Ref. 3 to account for

the impedance between the dots due to the narrow constric-
' (15) tion. We need to find the renormalization of the rates of
] o tunneling from the leads into the double-dot conductor. The
wherew, andw, are the occupation probabilities of states jmpedance of the charge redistribution within this conductor
with the charge of the left dot O arg] respectively. Since the suppresses the tunneling rates, not unlike the éfedtthe

escape rate to the right electrode is §trongly suppressed amglectromagnetic environment” on transport through a
much smaller than the rate of tunneling to the left lead, th

left dot is in equilibrium with the left lead and

r

W1 Wo

=) o)

ingle tunnel junction.
& glet | junct
To find the rate of tunneling through, e.g., the left tunnel
1 junction, we introduce a Hamiltonian that accounts for elec-
Wo="—m=evrrs W1=1—Wp. (16)  tron states in the left lead and left dot, as well as for the
1+e .. R K L. Rk
electron states participating in the redistribution of the

HereV is the bias applied to the leads. An expansion of thecharge between the dots. The separation of the latter group of

Current(lS) to linear order inv gives the conductance states from the two others is pOSSible at time scales shorter
than the time of electron propagation from the tunnel junc-
7h T\2(e/T)[1+ (e/27T)?] tion to the other dot. In the case of a single-mode constric-
G= Be2 0 r(K) sinh(&/T) . (17)  tion, this time is of the order of the inverse level spacing in
the dot. Therefore our theory is limited to temperatures ex-
The dependence(X) is given by Eq.(13). ceeding the level spacing.

As expected, the height of the peak is suppressed at low We assume that the constriction connecting the two dots
temperatures a§2. The result(17) can be applied to any of is a single-mode channel with no reflection. In this case the
the peaks(7) in the asymmetric system, provided that the set of electronic states responsible for the transport between
appropriate values oA and e are found from the electro- the dots is one dimensional and can be presented in a
static energy(4). The cotunneling peaks calculated for real- bosonized fornt¢ Thus the Hamiltonian can be written as
istic parametefsare presented in Fig. 3. H=Hg+Hc+H;,
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i zjw tK(t)dt 0

_ T T
= + -
Ho=2 ealay % CACHER CL="72CT" | S aTa—1o)/A]"

+ dx, (18 Here G|=(2we2/h)2|tkp|25(ek)5(ep) is the unrenormal-
ized conductance of the left barrier and we have introduced

the correlator

<[ p2  mneE|au,)?
2mno+ 2 ax

od — o0

He= EC(nL—2X)2+4EC[ no[U;(0)+u,(0)]
K(t)=(F(t)F'(0)). (25)

~ T+ 5 X

2 2 (19

1+\ a |?
] ' In the derivation of Eq.(24) we used the equality
(F(t)FT(0))=(FT(t)F(0)), which follows from the sym-
metry of the Hamiltoniari18)—(20) with respect to the trans-
Hy= kz (tepakapF +tiabaF ™). (200 formationn ——n, F—F, u,——u,, andX——X.
P In the absence of interactioB.=E-=0, the operators
First, inH,, since we are considering transport of an electrorF and F' commute with the Hamiltonian, the correlator
from the left lead into the left-hand daiy is the annihilation K(t)=1, and the conductance is not renormalized:
operator for electrons in the left lead aag is the operator G, =G,;. We show below that the time dependence of the
for electrons in the left dot, and e, are the corresponding correlatorK(t) is nontrivial if Ec ,Ec>0. Consequently, the
energies. The bosonized 1D electron system is described yffective conductances, is renormalized and acquires a
the diSplacementHU(X) and momentum denSitino.(X) in power-|aw temperature dependenceTaEC_
two spin channels, which satisfy the commutation relation 1 calculateK (t), we use a unitary transformatidh that

[Us(X),Psr(Y)]=178(X—Y) 856:; M and Ny are the mass  ghjfts the origin of the electron liquid displacement by a
and density of 1D electrons. Second, Htx, the charging  gjstance that depends on,

energy(4) is written in terms of the operatar, of the num-

ber of electrons tunneled through the left barrier and the

chargeeny[u;(0)+u,(0)] transferred from the left dot to - a1+
the right one. Finally, in the tunnel Hamiltoniai20) the U=expi 2X 2 nj®], (26)
matrix elements,, describe tunneling through the barrier.
The transfer of each electron into the dot changeby one;
to account for this, we use the operaterdefined by the N
commutation relation ©= 2%, [Py +p(y)]dy. (27)
F =F. 21
[F.n @D Upon the transformatioi26) the Hamiltonian is simplified
The tunneling current through the junction is and the operatoF acquires a phase factor
) ie 2e ~ - ,
l=e(n )=~ —([n. H])= 7“’“2 tr(ataF", U'(Ho+Hc)U=Ho+Ec(n.—2X)
k,p _
(22 +4Ecng[u;(0)+u (0)]%, (28

where the average is performed with the density matrix of

the system described by the Hamiltonidr8)—(20). Assum- A 1+\
ing that the transmission coefficient of the tunnel barrier is UTFU= Fexp( —i——0
small, we will calculate the tunneling current in lowest-

(second) order perturbation theory it),. Thus we can ex-

pand the density matrix up to the first ordertjn and find ~ The correlation function25) now factorizes,K=KgKe .
The factorKe=(F(t)F'(0)) is easily found

. (29

2 0
lL=— ;Rek% |tkp|2f7wdt
X[(al(0)ay(t)){a0)ag(t)(FT(0)F(t))

_at t T

(ak(t)ak(0))(ap(t)ap(0)><F(t)F ol 23 In the derivation of Eq(30) we assumed that the gate volt-
In thermodynamic equilibrium the two contributions in  ageX is close to one of the peak positioX =(2n+1)/4
compensate each other. To find the effective conductandsee Eq(10)] and that the temperature is much smaller than
G, of the left junction, which is renormalized due to the Ec so that only two states are involved. The calculation of
slow charge redistribution between the dots, we now shift thdlg is also straightforward, as the Hamiltonig?8) is qua-
chemical potential in the lead byV and findG, =dl, /dV  dratic in the bosonic variables, and the exponent2®) is
in the forn?? linear in these variables:

e 4EC(X* = X)t/h
K= (@ 1Ec(2n +1-4X)t/ny _ _
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asymmetric case we discovered adependence of the peak
conductance for weak tunneling andTd dependence for
) strong tunneling with the geometry-dependent exporent
:ex% (34N ([@(O)—@(t)]@(O))} <p=<1. In this section we show that in the intermediate
4 regime the power-law temperature dependence of the peak
conductance persists and find the corresponding exponents.
2T 1 (1+))%/4 To clarify the bounds on the intermediate regime, con-
= — : (31) sider the case of symmetric geometry. The weak-tunneling
{ 2ieEc S'”WWT(t—'5)/ﬁ]} result (11) was obtained from a master equation with the
) . . interdot tunneling rate calculated to first order@y. It is
One can now substitutd =KgKg into Eq. (24) to find  known?® however, that higher-order terms give rise to a
the renormalized conductance logarithmic renormalization of the conductan@,. This
renormalization becomes important at temperatures
32 T<Ty=Ecexg— (7441 Go)?]. Therefore atG,<e?/h
' the result(11) is applicable only in the range of temperatures
5 o Tk<T<Ec. On the other hand, a similar argument can be
where 7, =(1+\)°/4. The peak shape is given by the func- 5pplied in the vicinity of the strong-tunneling limit. Indeed, it

> strong-tunneling limit they are suppressed @4 For the

1+ 1+
K®(t):<exr{ —i T@(t) ex;{i T@(O)

_G| 772T
T2 T

677 eCEc

" [AE(X=X*)
s

tion F,(x) defined as was showf® that for Go=2(e?/h)(1—R) a weak reflection
2 in the constriction is a relevant perturbation that becomes
‘F 1+ 2. strong atT<EcR. Thus theT** dependence of the peak
2 2w conductance found in Sec. 111 B holds only in the temperature

Fy(x)= cosh(x/2) I'2+mx) (33 rangeEcR<T<E..

To find the low-temperaturel(KE:R) behavior ofG in

The tunneling into the double-dot system is suppressed ahe presence of weak backscattering in the constriction
low temperature$s; = T7L. The origin of this suppression is R<1, we complement the Hamiltonia(i8)—(20) with a

Anderson’s orthogonality catastrophe. The tunneling of arscattering termH’. In bosonic representatioH’ has the
electron into the left dot results in a significant change of theform?'®

ground state of the double-dot system, and the new ground b

state is orthogonal to the old one. Indeed, after the tunneling 2 _

process has changed the charge of the left dog,bgharge H™= Wﬁg c0$2mNgU4(0) = bol, (35
q;=q,=e(1+\)/4 must be transferred to the right dot in
each spin channel to minimize the electrostatic energy. Th
orthogonality of the two ground states results in a power-la
suppression of the tunneling density of staBesT"., where

where the phase shifb, is added to account for the possi-
Bility of an asymmetric location of the scatterer with respect
"o the center of the constriction. One can then repeat most of
the discussion of Sec. Il B with the new Hamiltonian. Upon

the exponent can be related to the charggs as® . h .
=25 (q,/€)? in agreement with Eq32). :22 ?(:rﬁ\ry transformatiof26) the backscattering term takes

The tunneling through the right barrier can be treated in
the same manner and the result for the renormalized conducx - D T
tance Gg can be found by replacingG,—G, and U'H'U=- ;JﬁZ CO{ZWnoUo(O)—cbxﬂL 7 (I+M)n
7— nr=(1—\)%/4 in Eq. (32). After the renormalized 7

conductance§, andGg are found, we can use the master- 2D
equation approach similar to the one outlined in Appendix B == 7\/ﬁC0 mNo[U;(0) +u (0)]— éx
and find the total conductance:
r
GG +=(1+M)n ]cos{rrn [uy(0)—u (0)]}, (36
G= R (34 2 - S
G +Ggr

where ¢y = ¢o+ (m/2) aX.
At T—0 the smaller of the two conductanc€s and Gg Unlike other terms(28) of the Hamiltonian, the back-
controlsG, which means that the peak value®fis propor-  scattering ternf36) shows nontrivial dependence not only on
tional to T7, with 5= (1+|\|)?/4. Depending on the geom- the sum of the displacements+u, , but also on their dif-
etry of the system, the parametermay vary from—1 to  ferenceu;—u,. At low temperaturesT<Ec, one is only
1 and is 0 in the symmetric case. Therefore the exponent dfterested in the low-energy behavior of the system. In this
the temperature dependengevaries from 1/4 in the sym- regime the fluctuations of the charge of the dot

metric case to 1 in the most asymmetric case. no[u;(0)+u,(0)] are frozen due to the charging energy
term in Eqg.(28) and can be integrated out. The resulting
C. Intermediate strength of tunneling between the dots backscattering term has the form

In Secs. Il A and Ill B we considered the cases of weak - - 8e“EcDR T
and strong tunneling between the dots. We found that fora ~ U'H’U=— TCO{ $x— 5 (1+M)n
symmetric system, in the weak-tunneling limit the conduc-
tance peak heights are independentTofwhereas in the X cogmng[u;(0)—u (0)]}; (37
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cf. Ref. 16. Since the operatoFs and F™ do not commute exactly one electron is transferred through the constriction.
with the backscattering terr87), the latter can affect the Thus we conclude that the total transfer of charge after one
Ke component of the correlatdt(t) and the conductance of electron has tunneled into the left dot and another one es-
the left barrier(24). caped from the right dot iAg=e. Since the charge trans-
To find the effect of the backscattering &R (t), we first  ferred through the constriction at the first step was
discuss the influence of the operat87) on the dynamics of e(1+\)/2, the tunneling of an electron from the right dot
the spin fieldu; —u; . One can easily show that the operator must be accompanied by the transfer of chagge—\)/2.
(37) is a relevant perturbatiof}, i.e., the amplitude of the We saw above that unlike charge, the spin is transferred in
cosine term grows at low energies. ThusTat0 the spin  quantized portionds= 3. Since the total transferred spin is
field fluctuatons are frozen at the value 3, we conclude that exactly one of the two tunneling events
No[u;(0)—u;(0)]=0 or 1 for the positive and negative val- involved the transfer of spin. Therefore, in the cases when

ues of coppx—(m/2)(1+AN)n_], respectively. the temperature dependenceGf is given by T(*N*4 and
When an electron tunnels into the double-dot systeml-1+(1+)\)2/4, the conductanc6&g behaves aglt(@-M¥4 gng

through the left barrier, the value af changes from 0 to 1. _ . . .
9 L g T-N%4 respectively. Finally, since the total conductance

Thus the prefactor in Eq(37) is proportional to either o .
cospy or cogdy—(m/2)(1+N\)n,]. If the two cosines have (34) is given by the smaller o6, andGg asT—0, we find

the same sign, the increase mf described by the operator )
FT does not affect the long-time dynamics of the spin mode, AN cos¢xcos{ by— z(1+)\)n,_
which remains pinned at the origin with the same value of 2

>0

u;(0)—u,(0). Inthis case the time dependencekof(t) is 102 T
not affected by the backscattering and the conduct@hcis T+ =7 if cosgxCos ¢y~ 5(1+?\)HL} <0.
still given by Eq.(32), with a different prefactor, which we (40)

do not calculate here. On the other hand, if the signs of

cospy and cofpy—(7/2)(1+ N\)n. ] are different, the change To determine which option applies to a particular peak, one
of n_ shifts the boundary condition for the spin mode from needs a detailed knowledge of the microscopic structure of
no[u;(0)—u,(0)]=0 to 1. An abrupt change of the bound- the double-dot system. It is clear, however, that for nearly
ary condition creates a disturbance in a 1D bosonic field thatymmetric geometries the paramekerwhich is determined
decays slowly, giving rise to power-law time dependences obnly by the electrostatics of the system, should be small:
electronic Green functiorfé. Thus the correlatoKg(t) ac- A <1. In this case we predict the temperature dependence
quires an additional time-dependent falldP K (t)  GoT*for all peaks, independent of the microscopic struc-
o« T/isinH #T(t—id)/h]. According to Eq.(24), such a ture of the double dot.

modification of K(t) not only changes the prefactor in Eq.  The temperature dependence of peak heights has been in-
(32), but also replaces the exponent by 7, +1. Thus, vestigated experimentally by van der Vadrin the regime
depending on the values afy and \, the backscattering of weak reflection, the data do follow a power law in the
either does not affect the temperature dependence of titemperature interval 100 mKT<1 K. The exponent ob-

renormalized conductan@LocT(l“‘)z"‘ or replaces it with a  tained from a fit isy=0.8-1.2, slightly less than our result
stronger oneG,_mT“(l“‘)z"‘. 7n=1.25 for the symmetric geometry.

The latter result can be easily interpreted in terms of th The resu_lt(4_0) shows th_at_the presence of even weak
orthogonality catastrophe. Indeed, as we saw, the tur]me"%ackscattermg in the constriction gives rise to a large correc-

of an electron into the left dot leads to the transfer of charg don Ag~1 étzomflf_]f ?xtﬁ)]onent Il<n thed potwer—lavlv t;ahmpéara_ture
q;+q;=e(1+\)/2 through the constriction. On the other epenaenc ot the peak conductance. 1n the defva-

hand, ifng[u:(0)—u, (0)] changes from O to 1, the trans- tion of Eq. (40) we assumed that the backscattering is weak

P . R<1. As the backscattering grows, it further affects the
ferred spinis ¢, —q,)/2e= 1. Thus the charge transferred in '
each of the spin channels is temperature dependence. Indeed, so far we assumed that the

presence of the backscattering only creates a boundary con-
1 14\ dition for the spin modeu;—u; and does not affect the
qm:e(iE”LT . (39)  charge modeu;+u, . However, from the studié'® of a
single dot connected to a large lead it is known that the
The suppression of the tunneling density of states is debackscattering does affect the charge transferred through the
scribed by the power lawxe™, where the exponent4  constriction. One can attempt to generalize the re@@ to

n=22,(9,/€)? From Eq.(38) we now find the case of arbitrarfR by introducing the valu€; of the
charge transferred through the constriction after an electron
(14+1)? tunnels into the left dot. It is clear from the derivation of Eq.
m=1+—F, (39 (39 that the second term there is actualy/e, i.e.,

which results in the power-law suppression of the conduc- 2

tanceGLOCTH(lH‘)ZM. =1+
To find the temperature dependence of the peaks in the

conductance through the double-dot system, one has to firlt R—O0 the correction to the electrostatic value

not only G, but alsoGg. It is clear that when a tunneling Q,=e(1+\)/2 of the transferred charge is snfll

process through the whole double-dot system is completedy Q;~ RIn1/R, which justifies the approximatio{89).

Q

(41)
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It is interesting to apply Eq(41) to the weak-tunneling
limit R—1, considered in Sec. Il A. In the asymmetric case
we demonstrated that the temperature dependence of the con-
ductance is given by Eq17). In the derivation we assumed
that because of the high barrier separating the dots, there is
no transfer of electrons between the dots after an electron
tunnels into the left dot. This means that bddh and As
vanish,n_ =0, and the conductand®, is not suppressed at
T—0. On the other hand, when an electron escapes to the
right lead, it must go through the constriction, leading to
Q;=e andAs=31. As a result, the relation fopg similar to
Eq. (41) will give ng=2, which leads to the quadratic tem-
perature dependeng#?) of the linear conductance.

In our approach the shape of the peak is obtained from .
Eq. (24) by substitutionK (t) o<{ = T/isinH #T(t—i /A ]}". As parameters, this allows one to vary the temperature by at

. ; least one decade.
a result, the shape of the peak is always uniquely related t& .
its temperature dependence The effect of quantum charge fluctuations on the ground-

state energy has been recently demonstrated experi-
) mentally*® The data of Waugtet al* is in a quantitative

FIG. 4. Equivalent electrostatic circuit for the double-dot device
of Fig. 1 in equilibrium.

il (42 agreement with the present thediyThe temperature depen-
T dence of the peak conductance, which is related to the dy-
namics of the charge redistribution, was studied in a very
recent experiment by van der Va&ftThe temperature de-
Bendence exponent found experimentally in the regime of
weak reflection,=0.8—1.2, is somewhat smaller than the

theoretical valuep=1.25 we find for this case.

Gx=TF,

whereF , is defined by Eq(33) ande is proportional to the
deviation of the gate voltage from the peak center. One ca
easily check that the peak shafe) in the weak-tunneling
limit does coincide withF,(e/T).
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sufficiently low temperaturefl<E.. The positions of the

peaks in linear conductandg(V,) depend on the value of APPENDIX A: DERIVATION

Gy and in the I!n’:litG()*) 2e?/h the peaks become eqL_Jidistant OF THE ELECTROSTATIC ENERGY EQ. (4)
(Sec. I). A striking result, however, is that the height and
shape of the peaks also evolve significantly witly and In this section we find the electrostatic energy of the

remain nontrivial even in the limit of a reflectionless con- double-dot structure in terms of the capacitances of the indi-
striction Go—2e?/h. We have demonstrated that at any vidual dots and the gate voltage. To describe the electrostat-
Gy, except a special case of sm@l} in a symmetric two-dot ics of the physical structure shown schematically in Fig. 1,
system(Sec. Il A), the peak conductance is a power-law we introduce the circuit diagram in Fig. 4. The electrostatics
function of temperaturd. The exponent of the power law is determined by the gate voltayg and five capacitances:
depends on the charge redistribution between the dots th&; andC, are the capacitances of the dots to the gateis
accompanies the electron transport through the two dotghe capacitance between the dots, &dand Cs are the
Both this exponent and the explicit peak shapes depend orapacitances of the dots to everything else.

the dots’ geometry, as well &, (Secs. IlIB and 111 Q. The In terms of the charge on each capacitor, the electrostatic
suppression of conductance at low temperature and bias camergy is

be understood in quite general terms as an Anderson or- 5 ) 5 ) )

thogonality catastrophe caused by the redistribution of _Or qz ds Q4 ds

charge(see Secs. llIB and IlICand the same exponents U= 2C, + 2C, + 2C, + 2C, + 2Cs —01Vg—02Vg-

should describe the bias dependence of the differential con- (A1)

ductance aff =0. S
u The number of electrons on each dot is given by the sum of

In deriving our results, we assumed that the incomingth h h iate th ”
electron dwells in a dot for a long timg>#%/T before € charges on the appropriate three capacitors

r(_aach_mg the constriction that connects the dots. In a generic —eNy =0+ s+, (A2)
situation of a dot lacking a special symmetry, the electron
bounces off the walls many times before it gets to the con- —eNy=0y— Qs+ Gs. (A3)

striction. The dwelling time is determined by the level spac-
ing ty~%/SE. Therefore, the results we presented in Sec. IlIWe now must minimize the energy EGA1) at fixed values
are valid in the temperature intervéE <T<Ec. For typical ~ of V,, N;, andN, and evaluate the energy at this minimum.
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The result has the forrtd) (up to an irrelevant constanand  Heret,, is the matrix element of tunneling from the st&te

we now give explicit expressions for the parameters in thisn the left lead to the state in the left dot,n,,) andeyp,) are

equation. the corresponding Fermi occupation numbers and energies,
First, the energy involved in changing the total charge orgy(X) andE,(X) are the values of the ground-state energy

the double dot system is given simply by the total capaci-of the double-dot system with charge 0 and 1, and the func-

tance of the double-dot to the external world. Introducing thetion f(x) is defined as

external capacitance

X
Cex=C;1+C,+Cy+Cs, (A4) FO)=gar—7- (B2
we find In deriving Eq.(B1) we assumed the biag applied to the
e2 left lead. In a similar way one can find the rates of all other
Ec==. (A5)  transitions.
2Cext In a stationary state the time derivatives of the occupation

The coupling of the total charge to the gate is given by theProbabilities of all four charge states vanish. This yields

capacitance to the gate, three independent equations=w,=w,=0, which can be
written as
_ —(C1+Cy)Vy
=% - (AB)  G|[wof(e;—eV)—w f(—e;+eV)]+Gof (0)[w,—w,]
Turning to asymmetric structures, we find that the fractional T Gi[waf(—&2) —w f(e2)]=0, (B3)

asymmetry of the capacitances determines the parameter
Gilwof(e1) —wif(—21) ]+ Gof (0)[w;—w,]

A=(CotCsmC1=Co)/Con. (A7) + G [Wof(—er+eV)—w,f(e,—eV)]=0, (B4)
In terms of this asymmetry parameter, we find that the charg-
ing energy for transfer from one dot to the other is G[w,f(es—eV)—wyf(—g,+eV)]
= _ e? (A8) + G [wif(ez) —w,f(—&2)]=0. (BS)
€ 2[Ceu(1-\?)+4C5] Here we have introduced

and that the coupling of this excitation to the gate is given by £1=E4(X)— Eq(X) = 4Eo(X* —X)
1— =1 0 - C\A— ’

C.-C

a=2 C+GCy)

A+

(A9) g,=E»(X)—E(X)=4Ec(X* —X).

The currentl can also be expressed in terms of occupation
probabilities. In a stationary state, currents through all the
junctions are equal. Considering the current through the link
between the dots, we can exprésis the form

This completely specifies the electrostatic problem.

APPENDIX B: MASTER-EQUATION TECHNIQUE
FOR THE CONDUCTANCE PEAKS

In this appendix we derive the expressi@tl) for the
conductance peaks in the symmetric case. We restrict our-
selves to the case of temperatures that are much smaller than
Ec but can be of the order &q(X* —X*). For simplicity, Equations(B3)—(B5) must hold at any bias. Since we are
we assume that the gate voltagds close to}, so that only interested in linear regimeV<T, we can differentiate Egs.
the pair of peaks centered %t andX* given by Eq.(6) (B3)—(B5) and replace them by the system of equations for
with n=0 should be considered. In this regime only thethe derivativeswg, w;r, w,s, andw; of the occupation
states with charges @, and 2 should be taken into account. Probabilities over bias:

Clearly, one has four states, which can be denoted as O, , , ) , , ,
Wy w e wy oW Wy W
L L M
w 2

Go
I=Ff(0)(w,—wr). (B6)

r, and 2, wherd andr describe the two states with charge R

e on the left and the right dot, respectively. wo w T rooW W, W,

We start with introducing the probabilities of occupation (B7)
of the four states, which satisfy the obvious condition
Wo+ W, + W, +Ww,=1. The rate of transitions from state 0 to wy W/ woowy wy wyooe|
statel, which are ca_used by tunneling of an electron through ™|y, w, Nw,  w, MNw, w, T =0,
the left barrier, is given by (B8)
—=w02—772 [ty >N (1—n,) 8( e+ eV+Eqg—e,—Ej) wp wp e Wi W,
To—1 ﬁ k,p P P p 1 21 Wr_w_z—i_ T R2r WI_W_z :Ov (Bg)

of(E;—Eo—eV). (B1) cf. Ref. 28. Heraw; are the equilibrium occupation probabili-

ties and we introduced the equilibrium rates
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R=wWGf(e1)=W,Gf(—e,)=Gf(e,)Z" %, (B10)

Rr:WOGrf(Sl):WrGrf(_81):Grf(81)2711
(B11)

Ro=W,Gof(0)=w,Gof(0)=TGge *1'7Z71, (B12)

Ray =W, G f(g,) =W,G f(—eg,) =G f(ep)e *17Z271,

(B13)
Ror=wW G, f(e2) =W,G,f(—e2)= Grf(sz)e_sl”—z_l,
(B14)
with the equilibrium partition function

Z=1+2exp(e/T)+exq —(e;+e,)/T]. Since the sum of
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occupation probabilities always equals one, there are only
three independent variables in the syst@ii)—(B9).
Using Eq.(B6), we can also express the conductance

(B15)

in terms of the solution of the syste{B7)—(B9). In the limit
Go>G,,G,, we find
_ - RI Rr R2IR2r
TIR+R,  Ry+Ry

Substitution of the rateéB10)—(B14) into (B16) yields the
formula(11).
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