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We present a theory of the Coulomb-blockade oscillations of conductance through a quantum dot at rela-
tively high temperatures, when the conduction is achieved via thermal activation of electrons over the tunnel
barriers. We discover that the oscillations of conductance as a function of the external gate voltage persist in
this regime, and find their shape.@S0163-1829~96!02340-5#

Recent progress in microfabrication technology allowed
the creation of nanostructures with controllable conductance.
The transport of electrons in such devices is strongly affected
by the Coulomb interactions. The most striking manifesta-
tion of these interactions is the phenomenon of the Coulomb
blockade of conductance between two leads coupled to a
small conducting region by tunnel barriers. This phenom-
enon is observed in both metallic devices1 and GaAs
heterostructures2 at temperatures of the order of 1 K. The
Coulomb blockade in such structures manifests itself as pe-
riodic peaks in conductance as a function of the gate voltage,
and is due to the discreteness of the charge transferred in
each tunneling event.

The latest technological development has lead to the cre-
ation of silicon-based Coulomb blockade devices with work-
ing temperatures of order 100 K and above.3,4 At such high
temperatures one can expect the transport through the barri-
ers to be dominated by the thermal activation of electrons
over the barriers rather than tunneling through them. In the
present paper we study the Coulomb blockade oscillations of
conductance in this activation regime.

We start with a discussion of the conditions at which the
transport through a barrier is dominated by thermal activa-
tion. The conductanceG of a tunnel junction at arbitrary
temperatureT is given by the following expression:
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where ]nF /]e52@4T cosh2(e/2T)#21 is the derivative of
the Fermi function, andh is the Planck’s constant. In Eq.~1!
we assumed that the transport is essentially one dimensional,
which is usually a good approximation for barriers formed
by constricting the electron gas in the transverse direction.5

In the simplest case of a parabolic potential barrier
U(x)5U2 1

2mv2x2, the transmission coefficient is6
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The energy interval making the dominant contribution to in-
tegral ~1! depends on the relation betweenT and T0. At

T,T0 the region ofe near zero dominates, i.e., the conduc-
tance is determined by the tunneling of electrons with ener-
gies near the Fermi level. On the other hand, at higher tem-
peratures,T.T0, the main contribution to integral~1! comes
from energiese'U, meaning that the activated transport
dominates the conduction.

For reasonably long barriers~e.g., a barrier formed by the
gate-induced depletion! the parabolic approximation of the
barrier shape works well for all the energies from the top of
the barrier down to the Fermi level, provided the zero-
temperature conductance is not anomalously small.5 More-
over, the threshold temperatureT0 above which activation
becomes the dominant mechanism of electron transport ex-
ists for a barrier of arbitrary shape. Thus the following re-
sults are insensitive to this approximation.

In the following we will be considering temperatures ex-
ceedingT0. In this activated regime the conductance~1! is
easily found
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Let us now consider the transport between two leads
coupled to a small conductor~quantum dot! by two barriers,
Fig. 1. In a generic case the heights of the two barriers are
different, and the conductance of one of the contacts~say, the
right one! is much larger than that of the other one. In this
case the quantum dot is in equilibrium with the right lead,
and its thermodynamics is completely described by the par-
tition function

Z~N!5(
n

e2En~N!/T. ~4!

HereEn(N)5EC(n2N)2 is the electrostatic energy of the
system, which depends on the total capacitanceC of the dot
with respect to all the electrodes,EC5e2/2C; parameter
N5CgVg /e is proportional to the voltageVg applied to a
gate electrode and to the capacitanceCg of the dot with
respect to the gate;n is the number of electrons in the dot
counted from its equilibrium value atVg50.

The conductance of the system is determined by the trans-
mission of electrons through the left barrier. In the tunneling
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regime, the rate of electron transitions between the left lead
and the dot is determined by the transmission coefficient of
the barrier and by the occupation probabilities of the corre-
sponding electronic states. The latter give rise to the non-
trivial dependence of the conductance on the gate voltage.7

In the activated regime, the current through the barrier is
dominated by the electrons with high energiese'U, at
which the occupation numbers are exponentially small.~We
assume that the barrier height is large compared to the charg-
ing energy,U@EC .) Thus the transmission through the bar-
rier is determined exclusively by its height measured from
the Fermi level. If the bias voltageV is applied to the leads,
we find the current through the dot as
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n
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Here wn5e2En /T/Z is the probability of the dot to have
chargeen, andR(U) is the rate of activated transfer of elec-
trons over the barrier of heightU,
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In the last term in Eq.~5! we accounted for the fact that the
Fermi level for the (n11)st electron is shifted by
En112En due to the charging energy. The substitution of
Eq. ~6! into Eq. ~5! gives the following result for the linear
conductance:
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In Eqs. ~5! and ~7! we allowed the dependence of the
heightU of the left barrier onn, which may be caused by the
effect of the electric field of the charged dot. If one neglects
this dependence,Un5U, the conductance~7! of the system
coincides with the conductance~3! of the left barrier,

Gb(U), and is independent of the gate voltage. In this case
no Coulomb blockade oscillations would be observed.

We now show that the dependence of the barrier height on
the charge of the dot inevitably restores the oscillations of
conductanceG(N). Indeed, when an electron moves from
the left lead into the dot withn electrons, it overcomes the
barrierUn affected by the electric field of the charged dot.
The dependence of the barrier height on the charge of the dot
can be found as follows. The chemical potential for the
(n11)st electron in the dot is shifted due to the charging
effects byEn112En . This shift is due to the Coulomb in-
teraction of the (n11)st electron with all the other electrons
in the dot, and can be interpreted as a voltage
Vn5(En112En)/e applied to the dot. As a result, the poten-
tial barrier is increased by some fractionl of this voltage,

Un5U1l~En112En!. ~8!

Here the constantl is determined by geometry of the con-
tact, and 0,l,1; for a symmetric contact we expectl5
1
2. We now substitute Eq.~8! into Eq. ~7!, and find
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whereGb(U) is the conductance~3! of the left barrier.
At nonzerol the conductance~9! does depend on the

~dimensionless! gate voltageN. It is instructive to compare
the shapes of the conductance peaksG(N) given by Eq.~9!
with those in the case of conventional Coulomb blockade.7

Assuming that the charging energyEC exceedsT0, one can
choose the temperatureT in the intervalT0,T!EC . In this
case the Coulomb blockade of the activated conductance
manifests itself as narrow asymmetric peaks,

G~N!5Gb~U !
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see Fig. 2. HereDN is the dimensionless gate voltageN
measured from the nearest half-integer value. The centers of
the peaks are shifted from their positions in the case of con-

FIG. 1. Schematic view of the quantum-dot system. The applied
biasV which drives the current, is small,eV!T. Linear conduc-
tance G(N) @see Eq. ~9!# is controlled by the gate voltage
Vg[eN/Cg .

FIG. 2. Peaks~10! in conductance as a function of gate voltage
for the casesl50.25 andT50.1EC ~solid line!. The peaks are
asymmetric and wider than those for the conventional Coulomb
blockade ~Ref. 7!, G(N)5Gb(ECDN/T)/sinh(2ECDN/T), at the
same temperature~dashed line!.
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ventional Coulomb blockade byDN5(T/2EC)ln@l/(12l)#.
The asymmetry disappears only in the casel5 1

2, and then
the peaks are qualitatively similar to those7 for the blockade
of tunneling conductance. It is interesting, however, that the
activation energyECDN for the conductance~10! at off-peak
values of the gate voltage is smaller than that of Ref. 7 by a
factor of 2.

At higher temperatures,T*EC , the conductance peaks
transform into weak oscillations,

G~N!5Gb~U !@114e2p2T/ECsinpl sin~2pN2pl!#.
~11!

The shift of the maxima in conductance from their normal
positions N5(2n11)/2 is now more pronounced:DN
5 1

2(l2 1
2).

In conclusion, we have shown that the Coulomb blockade
phenomenon does not require thetunnelingmechanism of

conduction through the contacts separating the quantum dot
from leads. It exists in the regime of theactivationconduc-
tion as well,8 due to a periodic modulation in the gate voltage
of the barriers’ heights. This periodic modulation is a direct
result of the charge quantization. The charge of the dot is
quantized, and therefore the Coulomb blockade exists, as
long as the resistance of the contacts exceeds1 h/e2. How-
ever, the shape of the peaks in the conductance vs gate volt-
age dependence does reflect the dominating mechanism. For
the activation transport, the peaks generally are asymmetric,
and are shifting with the increase of temperature.
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