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The Josephson current in a junction containing resonant impurity levels in the
tunnel barrier is calculated. Depending on the relation between the
superconducting transition temperature and the width of these levels, the Coulomb
repulsion of electrons at impurities will either suppress the Josephson current or
stimulate it, by virtue of the Kondo effect.

The conductivity of a tunnel junction is very sensitive to the presence of impurity
states in the barrier separating the metal banks. A resonant tunneling through these
states provides the major component of the current beginning at extremely low impuri-
ty concentrations.' In real materials, the impurity states generally have a small radius
az 10 A, so there is a strong Coulomb repulsion, UR 0.1 eV, of two electrouns that
occupy one level. This repulsion does not lead to a substantial change in the normal
current, since it is a consequence of the tunneling of individual electrons. In the ab-
sence of a Coulomb interaction the Josephson current may also flow through resonant
states.” The Josephson current, however, stems from a correlated tunneling of pairs of
electrons, not single electrons, and it can be suppressed by Coulomb repulsion.

The role played by the Coulomb interaction varies with the relation between two
time scales: that for the tunneling of a Fermi electron, which is the same as the
reciprocal width I'™' of the resonant impurity state, and the correlation time of the
electrons in a Cooper pair, 7, ~' (7, is the superconducting transition temperature).
If the tunneling time is long (I'< 7. ), the resonant Josephson current at U =0 is
dominated by processes in which the two electrons of a pair are simultaneously at a
center. The Coulomb repulsion, U T, also prohibits such processes and leads to a
strong suppression of the Josephson current. In the case of a large level width, I's> 7,
the processes by which the two electrons of a pair tunne!l are separated in time, and the
magnitude of the Josephson current is determined by the tunneling amplitudes of the
individual electrons. As in the case of a junction with nonsuperconducting banks, the
one-electron amplitude is not suppressed by Coulomb repulsion. Furthermore, thanks
to the formation of a collective Kondo resonance at the Fermi level, the Coulomb
repulsion increases the probability for a tunneling through deep impurity levels. Ac-
cordingly, as we will show below, under the condition 7. < T" the Coulomb interaction
leads to an increase in the Josephson current.

We describe a Josephson junction with an impurity in the tunnel barrier by the
Hamiltonian
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Herea™, b *,and d * are the operators which create an electron in the left bank, in the
right bank, and at the impurity; the energies £, and ¢, are reckoned from the Fermi
level (U— «); t, and 1, are the tunneling matrix elements which link an impurity with
the left and right banks; and A, and A, are the superconducting order parameters in
the banks. The current in the junction is given by

d
I=e(&-t—kEaa;;aako)=2eIm§at1(a;Uda>. (2)

Assuming that the tunneling width of the levelissmall, I =T, + I',«€T,, we can
calculate the current by a perturbation theory in the tunneling Hamiltonian A, (here
[, = mvt?;,, where v is the density of electron states in the banks). For brevity, we
restrict the discussion to absolute zero. In calculating the current in the first nonvan-
ishing approximation, we should evaluate the expectation value in (2) in terms of the
wave function of the ground state, found to third order in H,. As a result, we find

4 OO

1 dt, dt,
fx) = 511,

(cosht, + cosht; ) (x + cosh?,) (x + coshi,) ’

3

where @ is the difference between the phases of the order parameters A, and A,, A =2
at €,>0, and A = — 1 at €, <0. (The anomalous sign of the current stems from a
localized spin in the barrier under the condition €, < 0; Ref. 3.) It can be verified that
if there were no Coulomb repulsion (U = 0), the Josephson current through the reso-
nant impurity would exceed (3) by a factor of A/T'» 1.

We now consider the opposite limit: 7, > T, I',. In the absence of a superconduc-
tivity (A, = A, = 0), under the condition €, < 0, Hamiltonian (1) describes an impu-
rity with a spin § = 1/2. The exchange interaction of the impurity spin with the band
electrons in the banks leads, by virtue of the Kondo effect, to the formation of a
collective resonant state at the Fermi level.* This state, which is formed by electrons
from both banks, contributes to the amplitude for the tunneling of a Fermi electron. If
the arrangement of the impurity in the barrier is symmetric, this contribution becomes
the largest one and corresponds to the unitary limit. If T, € T, the superconductivity
does not disrupt the collective resonance, so the impurity contribution to the Joseph-
son current also reaches its maximum value [here Ty ~T exp( — 7|€,|/2T") is the
Kondo temperature J. Impurities with negative values of €, thus dominate the current.
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To reduce the problem of the Josephson current through a single impurity to the
problem of Kondo scattering, we rewrite Hamiltonian H = H, + H, + H . in terms of
the new variables 4,, = (t,a,, + t:0,,)/t, B, = (txay, — tb,, )/t t = (¢7 +¢2)V2
As a result, H is represented as the sum of an Anderson Hamiltonian and a free-
particle Hamiltonian:

H=H,+H,,

HA :ngA kthka +H: + tz (A kzda' +d;AkU)’
ko ko

Hy = 2 §iB 0By
ko

Hamiltonian H, was studied by a numerical renormalization-group method in Ref. 5.
Krishna-murthy ef al.> showed that in states with energies € € T the impurity spin is
screened by band electrons, and at this energy scale H, is equivalent to the Hamilto-
nian

;= Z@A wrAry + (V/N) z A jgAig, Vo0,
ko kKo
which does not contain dynamic variables of the impurity center. We are interested in
the case T € Ty . We can therefore replace H, by H ’,. After returning to the previous
variables, we replace (1) by

v
H=Ho +Hy+ —0 B (g, +tabi, Nnnaky +tabyy ). 4

The calculation of the Josephson current with quadratic Hamiltonian (4) reduces to a
simple but tedious procedure of finding the Green’s function
Gl (1—7)= = (T b, (1A, (7)), '

tty .V "
I= —2—;—2— lim — 3 Im G4, (7=0).

> v-w N &,
Although momentum is not conserved in (4), the system of Green’s-function equa-
tions can be solved exactly, since the matrix element V' /N is independent of the mo-
menta of the scattered particles, k and k’. As a result, we find

e r,.r, 1 A(T) f(p)

I=2— — % A/T) —— tanh (——=——Z")si
e Y gy e s
4r,T, Y 112
= 1]~ ——— in? I_
f) =( T 1,0 sin” = (5)

In the limit 7 7. the current is given by [« A*(T) sing. With decreasing tempera-
ture, I increases. The magnitude of the current depends strongly on the position of the
impurity, reaching a maximum when the impurity is at the middle of the barrier
(I'/=T,). In this case, at T'= 0, the behavior /(¢) is very nonsinusoidal, since the
electron states in the different banks are highly hybridized.
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To calculate the current through the junction, we should sum expressions (3) and
(5) over all of the impurity states in the barrier. In carrying out this summation, we
assume that the impurities are distributed uniformly in coordinates and energy with a
state density g, and we assume that the level widths depend exponentially on the
distances from the corresponding banks: T, , = E, exp( — 2r,,/a). For large thick-
nesses, at which the condition T, »T'=FE, exp( — L /a) is satisfied, an averaging of
(3) yields

e E 0 2L
(I) ~ —E?>gS(L~aln — jexp(— —)sing, (6)
h 0 A a
where S is the area and L the thickness of the tunneling layer. At smaller thicknesses,
under the conditon T, €T, a collective resonance involving impurities with I', =T, is
important. An impurity makes a resonant contribution (5) to the current under the
condition Tx(€5)>7T., which holds for energies in the interval
— (2/m) Ty In(Yy/A) < €5 <0. [By virtue of the Kondo effect, this interval is larger
by a factor of In(T',/A) than the width of the resonance in the problem without a
Coulomb interaction.] The behavior I{(@) remains anomalous at low temperatures:

A 1 " 1+sm(—‘*2?—)
(IY= —(=)ecos —In———= | T -0 (7)

R 72 v

1 —si —)

2

Here (1/R Y~ (e*/#)gSaE, In(Ty/T,)exp( — L /a) is the conductance of the junc-
tion in the normal state at T= T, found with allowance for the Kondo effect.®

Comparison of (6) and (7) shows that a disruption of the resonance with increas-
ing L leads to a replacement of the behavior (I) «cexp( — L /a) by the faster
(I) wexp( — 2L /a), while the conductance remains proportional to exp( — L /a).

We wish to thank K. A. Kikoin, A. I. Larkin, and D. E. Khmel'nitskii for useful
discussions.
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