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A tunnel junction containing a metal grain in a barrier is analyzed. The
conductance is calculated as a function of the grain potential in the low-
temperature limit.

As was shown in the classic experiments by Zeller and Giaver,' metal inclusion
(grains) in a barrier determine the conductance of a tunnel junction, since most of the
tunnel current flows through such inclusions. A tunneling electron alters the charge of
the grain by + e, and the corresponding change in the energy of the grain is
AE~¢e*/C, where C is the capacitance of the grain. The real states at a grain can be
used during tunneling by only those electrons whose energies exceed AE. The corre-
sponding component of the junction conductance is incorporated in a kinetic equa-
tion>* with a temperature dependence of an activation nature, G<cexp( — AE /T).
The assertion that G vanishes as 7—0 is called the “Coulomb blockade” of one-
electron tunneling.’ In the present letter it is shown that at low temperatures transi-
tions through virtual states at the grain must be taken into account, and because of
these transitions, the conductance does not vanish as 7-0.

We describe a tunnel junction containing a grain in a barrier (Fig. 1) by the
Hamiltonian
H =Hy+Hy
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FIG. 1.
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Here A, B,, and C, are operators which annihilate an electron in the left and right
banks of the junction and at the grain, respectively; €, and €, are their energies,
reckoned from the Fermi level;

A
=eZ(CIC,—0(—¢))) 2)

is the grain charge operator [6(x) is the unit step function]; and ¢#; and ¢, are matrix
elements which describe tunneling transitions between the banks and the grain. We
treat the grain potential ¢ as an independent parameter, since there is the possibility of
varying this potential experimentally*® with the help of an auxiliary electrode (a
gate).

_The potential shift ¢ + e/C in Hamiltonian (1) is equivalent to a redefinition
0—-Q + e. In other words, according to (2), it is equivalent to a shift of the energies
€, by an amount equal to the spacing of the grain levels, v, ' (in such a way that there
is one less state under the Fermi level; here v, is the density of states in the grain). Ina
macroscopic grain, the distance between levels is small in comparison with the Cou-
lomb energy ¢°/C, and this shift has no effect on the macroscopic properties of the
system. The conductance G(¢) is therefore periodic in ¢ with a period e/C (see also
Refs. 6 and 7), so we will restrict the discussion below to the interval

- << (3)

2 20
We consider only the case of tunnel barriers with a low transmission, which is the case
of most interest experimentally.® In this case, the conductances
Gl,?.: qVVqta,z (4)
are small in comparison with the fundamental quantity G, = 2me’/# (here v is the
density of states in the banks).
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We begin our calculation of the junction conductance G(¢) at 7= 0 by finding
the probability for the tunneling of an electron from the left bank to the right one in
the first nonvanishing order of a perturbation theory in Hy. This probability is deter-
mins:\d by the matrix element of the second term, H.(E — H,) ~' Hy. of the series for
the T operator calculated between the states 4 ./ |®> and B/ |®> (here [P > is the
H,, ground state, in which all levels below the Fermi level are filled):

A t1t2 {1[’2
(@IBuTA} | ®)=~ 2 —————0(g)*+ 2 . 6(-¢,). (5
A+ (— + —€, t(— —e
&t (55 *e0) &t (5o )

The two terms in (5) correspond to virtual states in which there is respectively an
additional electron or hole in the grain. Substituting (5) into the known relation

A
G =G, kEI:cfl(q)IBk,TA,:|<I>)|26(ek)6(ek,), (6)
we find, in lowest-order perturbation theory,
¢
GG, , ¢ ¢
G(p)= In . N
G e
“ -y
2C

Over most of the interval in (3), the temperature-independent conductance which we
have found, (7), is greater than the activation value® derived by the kinetic-equation
method at temperatures
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As we will see below [see (8)], expression (7) gives a correct description of the
behavior G(g@) over nearly the entire interval in (3). At ¢ = 4+ e/2C; however, the
expression for the states of the grain with different charges>® leads to a singularity in
(7). The calculation of G near the ends of interval (3) thus requires dealing with
higher orders of perturbation theory.

Since it is not possible to sum the entire perturbation-theory series, we will calcu-
late G(¢) in the leading-log approximation. This calculation can be carried out by the
renormalization-group method which Anderson has applied® to the Kondo problem.
In this method, we systematically reduce the band width ¢ and add to the Hamilto-
nian terms such that the amplitude for the transition k—& ' for the Fermi operators
does not change. To take this renormalization into account in second-order perturba-
tion theory corresponds to adopting the leading-log approximation. Carrying out this
procedure, we can generalize (7) to the region of ¢ values near + e/2C:

G,G G,+G, e+
G )= 1 2——-t 2{2\/ 1 2 / 1

In
G +G, 4 Gq e/2C—y

(8)
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It can be seen from (8) that the leading-log approximation cannot be used to study the
narrow neighborhoods |@ + ¢/2C | S U*, where

G

e m
U*: — - . q . (9)
G expd 4\/G1+G2}

At the boundary of the region of applicability of (8), the conductance reaches a value

G
G~G ____‘_(_;2_ (10)
(G, +Gy)?

As @ moves closer to the charge-degeneracy points + e/2C, there is no change in
estimate (10).

In our original Hamiltonian, (1), the electrons were assumed spinless. Spin can
be dealt with through a redefinition: G, = 47e*/4.

At a nonzero temperature or if a voltage is applied, inelastic-tunneling processes
will contribute to the current.’

We wish to thank D. E. Khmel’nitskii for useful discussions.

'H. R. Zeller and 1. Giaver, Phys. Rev. 181, 789 (1969).

21. O. Kulik and R. I. Shekhter, Zh. Eksp. Teor. Fiz. 68, 623 (1975) [Sov. Phys. JETP 41, 308 (1975)].

3D. V. Averin and K. K. Likharev, in Quantum Effects in Small Disordered Systems (ed. B. L. Altshuler
and P. A. Webb), in press.

“T. A. Fulton and G. J. Dolan, Phys. Rev. Lett. 59, 109 (1987).

SL. S. Kuzmin ef al., Phys. Rev. Lett. 62, 2539 (1989).

SL. I. Glazman and R. I. Shekhter, J. Phys.: Cond. Matter 1, 5811 (1989).

M. Annan et al., J. Appl. Phys. 65, 339 (1970).

8P. W. Anderson, J. Phys. C 3, 2436 (1970).

°D. V. Averin and A. A. Odintsov, Zh. Eksp. Teor. Fiz. 96, 1349 (1989) [Sov. Phys. JETP}.

Translated by Dave Parsons

487 JETP Lett, Vol. 51, No. 8, 25 April 1990 L.l. Glazman and K. A. Matveev 487



