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We study a system of one-dimensional electrons in the regime of strong repulsive interactions, where
the spin exchange coupling J is small compared with the Fermi energy, and the conventional Tomonaga-
Luttinger theory does not apply. We show that the tunneling density of states has a form of an asymmetric
peak centered near the Fermi level. In the spin-incoherent regime, where the temperature is large
compared to J, the density of states falls off as a power law of energy " measured from the Fermi level,
with the prefactor at positive energies being twice as large as that at the negative ones. In contrast, at
temperatures below J the density of states forms a split peak with most of the weight shifted to negative ".
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The discovery of conductance quantization in quantum
wires [1] has stimulated interest in transport properties of
one-dimensional conductors. From the theoretical point of
view, these systems are interesting because in one dimen-
sion interacting electrons form the so-called Luttinger
liquid [2], with properties very different from the conven-
tional Fermi liquids. A number of nontrivial properties of
the Luttinger liquid, such as the power-law dependence of
the tunneling density of states on energy and temperature,
have been recently observed experimentally [3–5].

It is important to note that the Luttinger-liquid picture
[2] describes only the low-energy properties of the system.
Quantitatively, this means that all the important energy
scales, such as the temperature T, must be much smaller
than the typical bandwidth of the problem. In a system of
spin- 1

2 electrons the charge and spin excitations propagate
at different velocities [6], resulting in two bandwidth pa-
rameters. In the noninteracting case both bandwidths are
equal to the Fermi energy EF � ��@n�2=8m, where n is the
electron density and m is the effective mass. Repulsive
interactions between electrons increase the charge band-
width D� and decrease the spin bandwidth D�. At moder-
ate interaction strength both bandwidths remain of the
order of Fermi energy EF, and the Luttinger-liquid picture
applies at T � EF. On the other hand, if the interactions
are strong, the exchange coupling of electron spins J is
strongly suppressed, and D� � J� D�. As a result the
Luttinger-liquid picture applies only at T � J, and there
appears an interesting new regime when the temperature is
in the range J� T � D�. In this regime the temperature
does not strongly affect the charge excitations in the sys-
tem, but completely destroys the ordering of the electron
spins.

A number of interesting phenomena have been predicted
in this so-called spin-incoherent regime. The destruction of
spin order may be responsible [7] for the anomalous quan-
tization of conductance in the experiments [8]. Further-
more, contrary to the conventional Luttinger-liquid picture,

the tunneling density of states may show a power-law peak
near the Fermi level [9,10] even in the case of repulsive
interactions,

 ��"� /
j"j�1=4K���1����������������������
ln�D�=j"j�

q ; J� T � j"j � D�: (1)

Here " is the energy of the tunneling electron mea-
sured from the Fermi level. The result (1) was first ob-
tained [9] for the Hubbard model in the limit of strong
on-site repulsion U ! 1. In this case the interactions
have a very short range, resulting in K� � 1=2 and � /
�j"j ln�D�=j"j��

�1=2. For longer-range interactions K� is
below 1=2, but as long as K� > 1=4, the density of states
has a peak at low energies.

A similar enhancement of the density of states at "�
D� was predicted earlier [11] in the strongly interacting
limit of the Hubbard model at zero temperature,

 ��"� / j"j�3=8; T � 0; J� j"j � D�: (2)

Here the effective exchange coupling of electron spins J�
t2=U, the bandwidth D� � t, and t is the hopping matrix
element in the Hubbard model. The different power-law
behaviors of the density of states (1) and (2) point to the
nontrivial physics developing when the temperature T is
lowered below the exchange J, even if they are both small
compared to the energy ".

In this Letter we develop a unifying theory, which
enables one, in principle, to obtain the density of states
in a system of strongly interacting one-dimensional elec-
trons at arbitrary ratio T=J, as long as T, J� ". In the
spin-incoherent case, T 	 J, our theory reproduces the
result (1). Furthermore, we show that true asymptotic
behavior of ��"� at low energies is given by Eq. (1) even
at T � 0. Most importantly, in both cases the peak in ��"�
is very asymmetric. In particular, the 3=8-power law (2)
appears for short-range interactions at moderately low
positive energies ", but never at " < 0.
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Our approach is based on the fact that at strong inter-
actions, when J=D� ! 0, the Hamiltonian of the system of
one-dimensional electrons can be written as a sum of two
contributions describing the charge and spin degrees of
freedom, H � H� 
H�, with

 H� �
X
l

JSl � Sl
1: (3)

This result was first obtained by Ogata and Shiba [12] in
the U=t! 1 limit of the Hubbard model. In the case of
quantum wires at low electron densities a similar decou-
pling of charge and spin degrees of freedom was discussed
in Ref. [7]. This decoupling occurs whenever the repulsive
interactions are so strong that even electrons with opposite
spins do not occupy the same point in space. In this case the
electrons are well separated from each other, and their
spins form a Heisenberg spin chain (3). Strong repulsion
between electrons suppresses the exchange of nearest-
neighbor spins, J� EF; the coupling of next-nearest
neighbors is negligible. Thus Eq. (3) is a universal spin
Hamiltonian for one-dimensional electron systems with
strong repulsion, such as the Hubbard model [12] at U	
t and quantum wires at low electron densities [7].

Since the Pauli principle is effectively enforced by the
interactions even for electrons with opposite spins, the
charge part H� of the Hamiltonian can be written in terms
of spinless fermions (holons). In the case of the Hubbard
model [12] the holons are noninteracting, because two
holons never occupy the same lattice site, and the interac-
tion range does not extend beyond single site. On the other
hand, if the original interaction between electrons has
nonzero range, the holons do interact. Since we are only
interested in the density of states at energies " low com-
pared to the bandwidth D�, the holon Hamiltonian can be
bosonized,

 H� �
Z @u�

2�
�K�@x��2 
 K�1�@x��2�dx: (4)

Here u� is the speed of the charge excitations and K is
related to the standard Luttinger-liquid parameter K� for
the charge modes in an interacting electron system [2] as
K � 2K�, with the factor of 2 originating from the differ-
ent definition of the bosonic fields � and �. In the limit
U=t! 1 of the Hubbard model the holons do not interact,
and K � 1.

To find the tunneling density of states, one needs an
expression for the electron creation and annihilation op-
erators. The electron annihilation operator  ��x� affects
both the charge and spin degrees of freedom: it destroys a
holon at point x and removes a site with spin � from the
spin chain (3). Building on the ideas of Refs. [7,10,11,13]
we write the electron annihilation operator as

  R��x� �
ei�kFx
��x����x��

�2���1=2
Zl;�jl��kFx
��x��=�: (5)

The first factor is the bosonized form of an operator

destroying a right-moving holon; the full expression for
 ��x� consists of the term (5) and a similar expression for
the left-moving branch. (Here � � @u�=D� is the short-
distance cutoff; the holon Fermi momentum is related to
the mean electron density n as kF � �n.) The operator Zl;�
introduced in Ref. [11] removes site lwith spin � from the
spin chain. It is important to note that Eq. (5) properly
accounts for the fact [7,10] that charge modes shift the spin
chain at point x by �l � ��x�=�with respect to its average
position �l � kFx=�.

It is convenient to express the operators Zl;� in terms of
their Fourier transforms z��q�, where the momentum q is
defined on a lattice and assumes values between �� and
�. Then the operator (5) takes the form

  R��x� �
Z �

��

dq
2�

z��q�
eikF�1
�q=���x

�2���1=2
ei�1


q
����x��i��x�: (6)

In addition to the holon destruction operator ei����� the
integrand contains a factor ei�q=���. Similar factors appear
when bosonization is applied to the problem of x-ray-edge
singularity [14,15], where they represent the effect of the
core-hole potential on the electronic wave functions. More
specifically, a core hole with the scattering phase shift �
adds a factor ei�2�=��� to the fermion operator. Thus ac-
cording to Eq. (6) the electron tunneling process that
changes the momentum of the spin chain by q also adds
a scattering phase shift for the holons � � q=2. This ob-
servation is consistent with the fact [11] that for the state of
momentum Q of the spin chain, the periodic boundary
conditions for the holons acquire a phase factor eiQ.

The tunneling density of states ��"� can be computed as
imaginary part of the electron Green’s function. At j"j 	
J one can neglect the time dependence of the operators
z��q� in Eq. (6) and use their static correlation functions.
Utilizing the standard techniques [2] to average exponen-
tials of time-dependent bosonic fields� and � in Eq. (6), in
the limit of zero temperature we obtain

 ��� �"� � �0

Z �

��

dq
2�

c�� �q�
��	�q� 
 1�

�
j"j
D�

�
	�q�

(7)

for positive and negative ". Here �0 � ��@u��
�1 and the

exponent 	�q� is given by

 	�q� �
1

2

��
1


q
�

�
2
K 


1

K

�
� 1: (8)

We have also defined the static correlation functions
 

c
� �q� �
X
l

hZl;�Z
y
0;�ie

�iql; (9a)

c�� �q� �
X
l

hZy0;�Zl;�ie
�iql; (9b)

with averaging performed over the ground state of the spin
chain (3).

At j"j � D� the dominant contribution to the integral in
Eq. (7) comes from the vicinity of its lower limit, q � ��.
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The j"j=D� ! 0 asymptote has the form

 ��� �"� � �0

�������
�

8K

r
c�� ���

�� 1
2K�

�
j"j
D�

�
�1=2K��1 1���������

ln
D�

j"j

q : (10)

This result assumes that the functions (9) do not vanish at
q � ��.

It is important to point out that even though we so far
assumed T � 0, the low-energy asymptote (10) agrees
with Eq. (1), rather than Eq. (2). Indeed, in the case of
the Hubbard model the holons are noninteracting, the
parameter K � 1, and the density of states behaves as
���"� / 1=

���
"
p

, instead of the 3=8 power law (2).
To resolve this disagreement, we first notice that at K �

1 our Eqs. (7) and (8) are essentially equivalent to Eqs. (4),
(10), and (13) of Ref. [11]. In the notations of Ref. [11] the
functions (9) are given by c
� �q� � �N 
 1�C�;N��� q�
and c�� �q� � �N � 1�D�;N��� q� in the limit when the
number of sites N in the spin chain is infinite. These
functions have been computed numerically [11] by per-
forming exact diagonalization of the Heisenberg spin
chain (3) of up to 26 sites. At that system size the re-
sults have converged; they are shown schematically in
Fig. 1. It is worth noting that the function c
� �q� is numeri-
cally small at �=2< jqj<�, with c
� ���� 
 0:045,
whereas c�� ���� 
 0:46 [11,16]. This indicates that at
very low energies " (but still "	 J) the peak (10) of the
density of states is very asymmetric, with the tail below the
Fermi level being higher than the one above it by an order
of magnitude.

Given the numerical smallness of the leading asymptote
(10) of the density of states at positive ", it is worth
considering the subleading contributions to the integral in
Eq. (7). They come from the values of q in the range
��=2< q< �=2, where c
� �q� is of order one. Taking
into account the fact that c
� �q� diverges as 
=

������������������
q
 �=2

p
with 
 
 0:8 at q! ��=2
 0 [11,17,18], we find

 ~�
� �"� � �0

�������

2K
p

�� 1
2K


K
8�

�
"
D�

�
�1=2K�
�K=8��1 1���������

ln
D�

"

q :

(11)

At K � 1 the exponent in Eq. (11) becomes �3=8, in
agreement with Eq. (2).

At low positive energies the density of states can be
treated as the sum of the contributions �
� and ~�
� , given by
Eqs. (10) and (11). The subleading contribution ~�
� di-
verges less rapidly than �
� at "=D� ! 0, but with the
numerical coefficient that is larger by a factor of about
20. Thus for practical purposes the peak in the density of
states ���"� is given by ~�
� �"�, Eq. (11), at positive ", and
by ��� �"�, Eq. (10), at negative ".

We now turn to the spin-incoherent regime, T 	 J.
Assuming that j"j 	 T, one can still use Eq. (7); however,
the definitions (9) of the functions c�� �q� should now
assume ensemble averaging. At T 	 J the functions
c�� �q� can be easily computed by using the following
simple argument [19]. Given that the operators Zl;� and
Zyl;� remove and add a site with spin � at position l, it is
clear that the ensemble average hZy0;�Zl;�i equals the
probability of all the spins on sites 0; 1; . . . ; l being �. At
J� T the spins are completely random, so hZy0;�Zl;�i �
1=2jlj
1. Similarly, hZl;�Z

y
0;�i � 1=2jlj. Then the defini-

tions (9) give

 c
� �q� � 2c�� �q� �
3

5� 4 cosq
: (12)

The expression for c�� �q� is equivalent to the result for
D�;N�Q� found in Ref. [19].

It is important to point out that c
� �q� and c�� �q� differ by
a factor of 2. As a result, the density of states (10) has a
clear asymmetry: ���"� � 2����"� at T � "� D�. The
physical meaning of this result is very simple: the proba-
bilities of adding an electron with spin � at energy " and
removing one at �" differ by a factor of 2 because the
electron that is being removed has the correct spin with
probability 1=2.

The tunneling density of states can be studied experi-
mentally by measuring the I-V characteristics of tunneling
junctions in which one of the leads is a quantum wire.
When the electron density in the wire is sufficiently low,
the exchange coupling is expected to be exponentially
weak, and the regime J� T � D� can be achieved [7].
In the experiment [20] such a measurement was performed
in a situation where the second lead is another quantum
wire. By applying magnetic field the authors have been
able to observe momentum-resolved tunneling. To mea-
sure the density of states, it is more convenient to make a
point junction from a metal tip to the side of the quantum
wire. Contrary to the expectations based on the Luttinger-
liquid theory, we predict that the I-V characteristic of
such a junction will be very asymmetric with respect to
reversal of the bias when J� eV � D�. The dependence

 

c

c

−π −π/2 0 π/2 π

1

2

3

(q)−
σ

+(q)σ

q

FIG. 1. Sketch of the dependences c
� �q� and c�� �q� at zero
temperature (solid and dashed lines, respectively), based on the
numerical results of Ref. [11].
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���eV� / dI=dV should have a peak at low bias at K� >
1=4, or a dip at K� < 1=4, but the asymmetry should be
observed in either case.

The predicted asymmetry of the density of states is
caused by the nontrivial interplay of the spin and charge
degrees of freedom. As a result, the asymmetry should
disappear in a polarizing magnetic field, �BB	 T, J.
Indeed, if all spins are fixed in the " direction, one easily
finds c�" �q� � 2���q�. Then according to Eq. (7) the den-
sity of states �"�"� � �0�j"j=D��

	�0�. This result recovers
the standard Luttinger liquid suppression of the density of
states [2] and shows no asymmetry around the Fermi level.

Conductance of quantum wires is expected to depend
strongly on the ratio J=T [7]. Our theory provides a new
way to probe this ratio by observing the asymmetry of the
density of states ��"�. The signature of the spin-incoherent
regime, J=T � 1, is the doubling of the density of states at
positive energies, compared to the negative ones, ��"� �
2���"�. At J=T 	 1 the asymmetry is inverted, ���"�>
��"�. This evolution of the density of states is described by
Eq. (7), where the temperature dependence is contained in
the functions c�� �q�. Using Eq. (9) one can easily check
that in the absence of magnetic field the integral of c
� �q�
over all q is always larger than the integral of c�� �q� by a
factor of 2. At high temperatures c
� �q� � 2c�� �q�, but as T
becomes lower than J, the weight is redistributed so that
c
� �q� is large at jqj<�=2, whereas c�� �q� is large at jqj>
�=2, see Fig. 1. Since the expression (7) emphasizes larger
values of jqj, the density of states ���"� below the Fermi
level increases, whereas ��"� decreases.

As the temperature is reduced, c�� ��� grows from 1=6 at
T 	 J, Eq. (12), to about 0.46 at T=J ! 0 [11,16]. Thus
the density of states at negative energies will increase by
nearly a factor of 3. At the same time the density of states at
positive energies decreases. Because of the importance of

the subleading contribution (11) the experimental results
cannot be analyzed in terms of the behavior of c
� ���,
Eq. (10). However, in the limit T ! 0, the density of states
at sufficiently low positive energies will become much
smaller than at the negative ones.

To summarize, we have established the true low-energy
asymptote (10) of the density of states ��"� in a strongly
interacting system of one-dimensional electrons. We pre-
dict ��"� to show asymmetric behavior illustrated in Fig. 2.
The asymmetry is strongly temperature dependent even at
T � j"j. As the temperature is reduced, the system crosses
over from the spin-incoherent regime at T 	 J to the spin-
coherent one at T � J, and the asymmetry changes sign.
Although to the best of our knowledge no existing experi-
ments probe the tunneling density of states in strongly
interacting one-dimensional electron systems, we propose
that a modification of the setup of Ref. [20] could be used
for this purpose.
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T

FIG. 2. Sketch of the tunneling density of states ��"� in two
regimes: high temperature T 	 J (solid line) and low tempera-
ture T � J (dashed line). At T 	 J and "	 T we predict
��"� � 2���"�. As the temperature is lowered below the ex-
change constant J, the density of states at " < 0 grows by about a
factor of 3. Conversely, at " > 0 the density of states decreases
dramatically. At j"j � J the standard Luttinger-liquid effects
give rise to power-law suppression of the density of states [2],
leading to a dip at low ".
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