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We consider interacting electrons in a quantum wire in the case of a shallow confining potential and low
electron density. In a certain range of densities, the electrons form a two-row (zigzag) Wigner crystal whose
spin properties are determined by nearest and next-nearest neighbor exchange as well as by three- and four-
particle ring exchange processes. The phase diagram of the resulting zigzag spin chain has regions of complete
spin polarization and partial spin polarization in addition to a number of unpolarized phases, including anti-
ferromagnetism and dimer order as well as a novel phase generated by the four-particle ring exchange.
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I. INTRODUCTION

The deviations of the conductance from perfect quantiza-
tion in integer multiples of Gy,=2¢*/h observed in ballistic
quantum wires at low electron densities have generated great
experimental and theoretical interest in recent years.!”?’
These conductance anomalies manifest themselves as quasi-
plateaus in the conductance as a function of gate voltage at
about 0.5-0.7 of the conductance quantum G, depending on
the device. Although most experiments are performed with
electrons in GaAs wires,' ' a similar “0.7 structure” was
recently observed in devices formed in two-dimensional hole
systems.!?"1# It is widely accepted that the origin of the qua-
siplateau lies in correlation effects, but a complete under-
standing of this phenomenon remains elusive.

Although some alternative interpretations have been
proposed, %27 most commonly the experimental findings
are attributed to nontrivial spin properties of quantum
wires.!#-1014-25 In a truly one-dimensional geometry, the
spin coupling is relatively simple: electron spins are coupled
antiferromagnetically, and the low-energy properties of the
system are described by the Luttinger liquid theory. The pic-
ture may change dramatically when transverse displacements
of electrons are important and the system becomes quasi-
one-dimensional. In particular, the spontaneous spin polar-
ization of the ground state, which was proposed!®-%10:14-16 54
a possible origin of the conductance anomalies, is forbidden
in one dimension®® but allowed in this case.

The electron system in a quantum wire undergoes a tran-
sition from a one-dimensional to a quasi-one-dimensional
state when the energy of quantization in the confining poten-
tial is no longer large compared to other important energy
scales. In this paper, we consider the spin properties of a
quantum wire with shallow confining potential. In such a
wire, the electron system becomes quasi-one-dimensional
while the electron density is still very low, and thus the in-
teractions between electrons are effectively strong. At very
low densities, electrons in the wire form a one-dimensional
structure with short-range crystalline order—the so-called
Wigner crystal. As the density increases, strong Coulomb
interactions cause deviations from one dimensionality creat-
ing a quasi-one-dimensional zigzag crystal with dramatically
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different spin properties. In particular, ring exchanges will be
shown to play an essential role.

We find several interesting spin structures in the zigzag
crystal. In a sufficiently shallow confining potential, in a cer-
tain range of electron densities, the three-particle ring ex-
change dominates and leads to a fully spin-polarized ground
state. At higher electron densities and/or in a somewhat
stronger confining potential, the four-particle ring exchange
becomes important. We study the phase diagram of the cor-
responding spin chain using the method of exact diagonal-
ization and find that the four-particle ring exchange gives
rise to novel phases, including one of the partial spin polar-
ization.

The paper is organized as follows. The formation of a
Wigner crystal in a quantum wire and its evolution into a
zigzag chain as a function of electron density are discussed
in Sec. II. Spin interactions in a zigzag Wigner crystal, which
arise through two-particle as well as ring exchanges, are in-
troduced in Sec. III. The numerical calculation of the rel-
evant exchange constants is presented in Sec. I'V. The results
of the numerical calculation establish the existence of a fer-
romagnetic phase at intermediate densities and the domi-
nance of the four-particle ring exchange at high densities.
Subsequently, a detailed study of the zigzag chain with four-
particle ring exchange is presented in Sec. V. An attempt to
construct the phase diagram for a realistic quantum wire as a
function of electron density and interaction strength is pre-
sented in Sec. VI. The paper concludes with a discussion of
the relation of our work to recent experiments, given in Sec.
VII. A brief summary of some of our results has been re-
ported previously in Ref. 29.

II. WIGNER CRYSTALS IN QUANTUM WIRES

We consider a long quantum wire in which the electrons
are confined by some smooth potential in the direction trans-
verse to the wire axis. Assuming a quadratic dispersion and
zero temperature, the kinetic energy of an electron is typi-
cally of the order of the Fermi energy Ep=(wfin)?/8m,
whereas the Coulomb interaction energy is of the order of
e’n/ €. Here, n is the (one-dimensional) density of electrons,
€ is the dielectric constant of the host material, and m is the
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FIG. 1. (Color online) Wigner crystal of electrons in a quantum
wire. The structure as determined by the dimensionless distance
between rows d/r, depends on the parameter v proportional to elec-
tron density (see text). As density grows, (a) the one-dimensional
crystal gives way to [(b) and (c)] a zigzag chain.

effective electron mass. As the density of electrons is low-
ered, Coulomb interactions become increasingly more im-
portant, and at n <a;l they dominate over the kinetic energy,
where the Bohr radius is given as ag=fh%e/me?. (In GaAs, its
value is approximately az=~ 100 A.)

In this low-density limit, the electrons can be treated as
classical particles. They will minimize their mutual Coulomb
repulsion by occupying equidistant positions along the wire,
forming a structure with short-range crystalline order—the
so-called Wigner crystal [Fig. 1(a)]. Unlike in higher dimen-
sions, the long-range order in a one-dimensional Wigner
crystal is smeared by quantum fluctuations, and only weak
density correlations remain at large distances.’* However, as
will be shown in the following sections, the coupling of elec-
tron spins is controlled by electron interactions at distances
of order 1/n, where the picture of a one-dimensional Wigner
crystal is applicable. Henceforth, we speak of a Wigner crys-
tal in a quantum wire with this important distinction in mind.
Upon increasing the density, the interelectron distance dimin-
ishes, and the resulting stronger electron repulsion will even-
tually overcome the confining potential V., transforming
the classical one-dimensional Wigner crystal into a staggered
or zigzag chain,’!*? as depicted in Figs. 1(b) and 1(c). From
the comparison of the Coulomb interaction energy Vi,(r)
=e?/er with the confining potential, an important character-
istic length scale emerges. Indeed, the transition from the
one-dimensional Wigner crystal to the zigzag chain is ex-
pected to take place when distances between electrons are of
the order of the scale ry such that Vg ,¢(ro)=Vin(ro).

It is therefore necessary to identify the electron equilib-
rium configuration as a function of density. In order to pro-
ceed in a quantitative way, we consider a specific model,
namely, a quantum wire with a parabolic confining potential
Veont(¥)=mQ?y%/2, where Q) is the frequency of harmonic
oscillations in the potential V.(y). Within that model, the
characteristic length scale r, is given as

ro = (2e*emQ?)'3. (1)
It is convenient for the following discussion to measure

lengths in units of r(. To that respect, we introduce a dimen-
sionless density,
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v=nry. (2)

Then, minimization of the energy with respect to the electron
configuration®’? reveals that a one-dimensional crystal is
stable for densities »<<0.78, whereas a zigzag chain forms at
intermediate densities 0.78 <v<1.75. (If density is further
increased, structures with larger numbers of rows
appear.’!32) The distance d between rows grows with den-
sity, as shown in Fig. 1. Note that at v=1.46, the equilateral
configuration is achieved. Therefore, at higher densities—
and in a curious contradiction in terms—the distance be-
tween next-nearest neighbors is smaller than the distance be-
tween nearest neighbors [see Fig. 1(c)].

III. SPIN EXCHANGE

In order to introduce spin interactions in the Wigner crys-
tal, it is necessary to go beyond the classical limit. In quan-
tum mechanics, spin interactions arise due to exchange pro-
cesses in which electrons switch positions by tunneling
through the potential barrier that separates them. The tunnel-
ing barrier is created by the exchanging particles as well as
all other electrons in the wire. The resulting exchange energy
is exponentially small compared to the Fermi energy Ep.
Furthermore, as a result of the exponential decay of the tun-
neling amplitude with distance, only nearest neighbor ex-
change is relevant in a one-dimensional crystal. Thus, the
one-dimensional crystal is described by the Heisenberg
Hamiltonian H,=XJ,S;S;,,, where the exchange constant J,
is positive and has been studied in detail recently.”*33-3> The
exchange constant being positive leads to a spin-singlet
ground state with quasi-long-range antiferromagnetic order,
in accordance with the Lieb-Mattis theorem.”®

The zigzag chain introduced in the previous section dis-
plays much richer spin physics. As the distance between the
two rows increases as a function of density, the distance
between next-nearest neighbors becomes comparable to and
eventually even smaller than the distance between nearest
neighbors, as illustrated in Figs. 1(b) and 1(c). Consequently,
the next-nearest neighbor exchange constant J, may be com-
parable to or larger than the nearest neighbor exchange con-
stant J;. Drawing intuition from studies of the two-
dimensional Wigner crystal,>*3° one comes to a further
important realization regarding the physics of the zigzag
chain: in addition to two-particle exchange processes, ring
exchange processes, in which three or more particles ex-
change positions in a cyclic fashion, have to be considered in
this geometry.

It has long been established that, due to symmetry prop-
erties of the ground state wave functions, ring exchanges of
an even number of fermions favor antiferromagnetism, while

those of an odd number of fermions favor ferromagnetism.*’
In a zigzag chain, the Hamiltonian reads
1
H= 52 [J1Pjje1 + JoPjjir = J3(Pjjaijun + Pjiajin))
J
+J4(Pjjrjusjer + Piojusjer) = o 1 (3)

where P;..; denotes the cyclic permutation operator of [
171
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FIG. 2. (Color online) The phase diagram including nearest
neighbor, next-nearest neighbor, and three-particle ring exchanges.
The effective couplings J ; and fz are defined in the text. The shaded
region between the dimer and ferromagnetic phases corresponds to
the exotic phase predicted in Ref. 48.

spins. Here, the exchange constants are defined such that all
J;>0. Furthermore, only the dominant /-particle exchanges
are shown. A more familiar form of the Hamiltonian in terms
of spin operators is obtained by noting that Pij=%+2S,-S ; and
i =Py, Py .P-f1—1j1'40

Using spin operators and considering the two-spin ex-
changes, one obtains the Hamiltonian

Hpy= 2 (1SS0 +288,,). (4)
j

The competition between the nearest neighbor and next-
nearest neighbor exchanges becomes the source of frustra-
tion of the antiferromagnetic spin order and eventually leads
to a dimerized ground state at J, >0.24J,.-* The latter can
be viewed as a result of the formation of spin singlets on the
nearest neighbor sites; one of the two such states is shown in
Fig. 2. Since the singlets have a finite binding energy, the
excitations of the system are separated from the doubly de-
generate ground state by a gap. (At J,=0.5J;, this simplified
picture is exact.*!)

The simplest ring exchange involves three particles and is
therefore ferromagnetic. Including the three-particle ring ex-
change J; in addition to the two-particle exchanges, the
Hamiltonian of the corresponding spin chain retains a simple
form. The three-particle ring exchange does not introduce a
new type of coupling but rather modifies the two-particle
exchange constants.*’ For a zigzag crystal, we find the effec-
tive two-particle exchange constants,

.712.]1—2.]3, (5)

.72=J2—J3. (6)

Thus, the total Hamiltonian has the form
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Hiy=2 (ilSij+1+jZSij+2), (7)
J

where J 1 and .72 can have either sign.

Consequently, regions of negative (i.e., ferromagnetic)
nearest and/or next-nearest neighbor coupling become acces-
sible. The phase diagram of the Heisenberg spin chain [Eq.
(7)] with both positive and negative couplings has been ex-
tensively studied.*'=* In addition to the antiferromagnetic
and dimer phases discussed earlier, a ferromagnetic phase

exists for J,<min{0,-4J,}.%¢ An exotic phase called the
chiral-biaxial-nematic phase has been predicted*® to appear

for 71 <0 and -0.25 <j2/71 <-0.38. However, the nature of
the system in this parameter region is still controversial. The
phase diagram is drawn in Fig. 2.

Thus, depending on the relative magnitudes of the various
exchange constants, different phases are realized. Extensive
studies of the two-dimensional Wigner crystal have shown
that, at low densities (or strong interactions), the three-
particle ring exchange dominates over the two-particle ex-
changes. As a result, the two-dimensional Wigner crystal be-
comes ferromagnetic at sufficiently strong interactions.3%3
Given that the electrons in a two-dimensional Wigner crystal
form a triangular lattice, by analogy, one should expect a
similar effect in the zigzag chain at densities where the elec-
trons form approximately equilateral triangles. More specifi-
cally, upon increasing the density and consequently the dis-
tance between rows, one would expect the system to undergo
a phase transition from an antiferromagnetic to a ferromag-
netic phase. To establish this scenario conclusively, the vari-
ous exchange energies in the zigzag crystal have to be deter-
mined. The system differs from the two-dimensional crystal
in two important aspects. (i) The electrons are subject to a
confining potential as opposed to the flat background in the
two-dimensional case. Even more importantly, (ii) the elec-
tron configuration depends on density (cf. Fig. 1) as opposed
to the ideal triangular lattice in two dimensions. In the fol-
lowing section, we proceed with a numerical study of the
exchange energies for the specific configurations of the zig-
zag Wigner crystal in a parabolic confining potential.

IV. SEMICLASSICAL EVALUATION OF THE EXCHANGE
CONSTANTS

The effective strength of interactions is usually described
by the interaction parameter r, which measures the relative
magnitude of the interaction energy and the kinetic energy
and is of order the distance between electrons measured in
units of the Bohr radius. For quantum wires, it is more ap-
propriate to use the parameter ro=rq/ap, which takes into
account the confining potential. Within our model, the inter-
action parameter rg is

2( me4 1 )2/3 (8)
"=\ benna)

For rq>1, strong interactions dominate the physics of the
system, and a semiclassical description is applicable. In or-
der to calculate the various exchange constants, we use the
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FIG. 3. (Color online) The exponents 7y, 7, 73, and 7, as
functions of the dimensionless density .

standard instanton method, successfully employed in the
study of the two-dimensional’*—3® and one-dimensional*3?
Wigner crystals. Within this approach, the exchange con-
stants are given by J,=J, exp(=S,/#). Here, S, is the value of
the Euclidean (imaginary time) action evaluated along the
classical exchange path. By measuring length and time in
units of ry and 7=12/€), respectively, the action S[{r;(7)}]
can be rewritten in the form S=%n\r(, where the functional

o0 %)
Al ()] = f d{z(ﬂwf)@ 1 ] ©)
—oo j j<i |r]~—rl~|

2

is dimensionless.
Thus, we find the exchange constants in the form

1=} exp(= gprq), (10)

where the dimensionless coefficients 7, depend only on the
electron configuration (cf. Fig. 1) or, equivalently, on the
density v. The exponents 7, are calculated numerically for
each type of exchange by minimizing the action [Eq. (9)]
with respect to the instanton trajectories of the exchanging
electrons. This procedure is mathematically equivalent to
solving a set of coupled, second order in the imaginary time
7, differential equations for the trajectories r;(7). The bound-
ary conditions at 7=+ are, respectively, the original equi-
librium configuration and the configuration where the elec-
trons have exchanged positions according to the exchange
process considered.

In the simplest approximation, only the exchanging elec-
trons are included in the calculation while all other electrons,
being frozen in place, create the background potential. It
turns out, however, that it is important to take into account
the motion of “spectators”—the electrons in the crystal to the
left and to the right of the exchanging particles—during the
exchange process. The results presented here are obtained by
successively adding more spectators on both sides until the
values 7, converge. We find that including 12 moving spec-
tators on either side of the exchanging particles determines
the exponents to an accuracy better than 0.1%.

Figure 3 shows the calculated exponents for various ex-
changes as a function of dimensionless density v, and the
corresponding values are reported in Table I. At strong inter-
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TABLE 1. The numerically calculated values of the density de-
pendent exponents 7; [see Eq. (10)]. The computation was carried
out including 12 moving spectator particles on either side of the
exchanging particles. Corrections to all #; from the remaining spec-
tators do not exceed 0.1%.

v T 7 e 74

1.0 1.050 2.427 1.254 1.712
1.1 1.161 2.169 1.261 1.605
1.2 1.255 1.952 1.275 1.532
1.3 1.337 1.754 1.287 1.469
1.4 1.406 1.566 1.293 1.398
1.5 1.456 1.376 1.278 1.299
1.6 1.471 1.169 1.215 1.135
1.7 1.391 0.901 1.022 0.784

actions (ro> 1), the exchange with the smallest value of 7, is
clearly dominant, and the prefactor Jf is of secondary impor-
tance to our argument. At low densities, when the zigzag
chain is still close to one dimensional, J; is the largest ex-
change constant, and the spin physics is controlled by the
nearest neighbor exchange. In an intermediate density re-
gime, when the electron configuration is close to equilateral
triangles, the three-particle ring exchange dominates. Thus,
the numerical calculation confirms our original expectation,
and a transition from an antiferromagnetic to a ferromagnetic
state takes place upon increasing the density. Surprisingly,
however, at even higher densities the four-particle ring ex-
change is the dominant process. The role of the four-particle
ring exchange and the phase diagram of the associated zig-
zag spin chain will be the subject of the following section.
More complicated exchanges have also been computed,
namely, multiparticle (/=5) ring exchanges as well as ex-
changes involving more distant neighbors. However, the ex-
changes displayed in Fig. 3 were found to be the dominant
ones.”

It is important to note here that spectators contribute to
our results in an essential way. Allowing spectators to move
results not only in quantitative changes (namely, a reduction
of the initially overestimated values ;) but in qualitative
changes as well: at high densities, the dominance of the four-
particle ring exchange J, over the next-nearest neighbor ex-
change J, is obtained only if spectators are taken into ac-
count. In particular, it is necessary to include at least six
moving spectators on each side of the exchanging particles
for J, to take over at high densities.

The considerable effect that the spectators have on the
values of the exponents raises the question whether a short-
ranged interaction potential might cause further quantitative
or qualitative changes to the physical picture. In order to
investigate that possibility, we have repeated the entire cal-
culation for a modified Coulomb interaction of the form

el 1 1
“‘{ﬂﬁ] (1

This particular interaction accounts for the presence of a
metal gate modeled by a conducting plane at a distance d
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FIG. 4. The calculated particle trajectories for various ex-
changes at a representative density v=1.5. It is evident that only a
few near neighbors of the exchanging particles move appreciably.

from the crystal. The gate screens the bare Coulomb poten-
tial, modifying the electron-electron interaction at long dis-
tances. Our calculation shows that this modification affects
the values of the exponents only weakly, even when the gate
is placed at a distance from the crystal comparable to the
interparticle spacing. Qualitatively, the physical picture re-
mains the same, with the order of dominance of the various
exchanges unaffected throughout the range of densities.

At the same time, it is particularly noteworthy that (both
for the screened and unscreened interactions) the contribu-
tion of the spectator electrons rapidly saturates as their num-
ber is increased. This is an indication that the destruction of
long-range order in the quasi-one-dimensional Wigner crys-
tal by quantum fluctuations will not affect our conclusions.
Figure 4 shows the particle trajectories for the dominant ex-
changes at a representative density of v=1.5. The trajectories
of both the exchanging particles and a subset of the specta-
tors are shown, and their relative displacements can be
readily compared.

V. FOUR-PARTICLE RING EXCHANGE

We have shown in the preceding section that in a certain
range of densities, the four-particle ring exchange dominates.
Unlike the three-particle exchange, the four-particle ring ex-
change not only modifies the nearest and next-nearest neigh-
bor exchange constants but, in addition, introduces more
complicated spin interactions.*? For the zigzag chain, we find

3
4-1
Hy=J,2, ETSJ' i1+ 2[(8;8;41)(Sj428 143)

J =1
+ (Sjsj+2)(sj+1sj+3) - (Sjsj+3)(sj+lsj+2)] . (12)

Not much is known about the physics of zigzag spin chains
with interactions of this type. We have studied this particular
system described by the Hamiltonian H=H,3+ H, using ex-
act  diagonalization, considering systems of N
=12,16,20,24 sites. Periodic boundary conditions have been
imposed, and we have employed the well-known Lanczos
algorithm to calculate a few low-energy eigenstates.

Figure 5 shows the total spin S of the ground state as a

function of the effective couplings 7, 1/J4 and j2/J4 for the
largest system considered, one with N=24 sites. The darkest
region corresponding to the maximal total spin is the ferro-
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FIG. 5. Total spin S of the ground state for a chain of N=24 sites
as a function of the effective couplings J 1/J4 and 52/14.

magnetic phase, which occurs for large negative couplings in
direct analogy to the phase diagram for the system without
four-spin interactions (see Fig. 2). For all system sizes that
we have considered, the obtained phase boundary is almost
independent of the system size and agrees very well with the
conditions for ferromagnetism,

.71+2J4<0, (13)

J,+47,+10J,<0, (14)

derived by treating the four-spin terms in the Hamiltonian
[Eq. (12)] on a mean field level near the ferromagnetic state.

A new phase of partial spin polarization appears adjacent
to the ferromagnetic phase. The partially polarized phase
possesses a ground state total spin of S=2 for N=12, §=2 or
4 for N=16,20, and S=4 for N=24; it appears that a total
spin of one-third of the saturated magnetization N/2 prevails
throughout most of that phase. The phase persists, to a sig-
nificant extent, in range and form as N increases. Therefore,
we believe that it is not a finite-size effect. We note here that
it has been shown rigorously that a model described by a
Hamiltonian having a similar form to ours also exhibits a
ground state with partial spin polarization.’! On the other
hand, the scattered points corresponding to the nonzero total

spin in the first quadrant (J;,7,>>0) appear to shift position
as N increases and the size of the total spin remains small,
S=<2, for all system sizes considered. We cannot ascertain at
this point whether they persist in a larger system.

At large values of |J,|/J4 and |J,|/J,, one would expect
to recover the phases present in the absence of J4. Thus, the
large white area in Fig. 5 corresponding to the total spin S
=0 should contain the antiferromagnetic phase, analogs of
the dimer phases observed in the system without four-spin
interactions, and possibly entirely new phases as well. In
order to distinguish between these phases, we first calculate
the overlap between the ground state wave functions in our
model and the ones representing the dimer and antiferromag-
netic phases in the well-studied model with J,=0. The rep-
resentative ground state wave functions are obtained for the

chain with J4=0 and typical parameter sets of ¥ 1 ,.72) chosen

075302-5
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FIG. 6. Overlaps of the ground state wave functions in the pres-
ence of the four-particle ring exchange with the wave functions
representing the (a) dimer and (b) antiferromagnetic phases for J,
=0. The representative ground states (a) and (b) are obtained for

(il,iz,J4)=(1,10,0) and (71,72,.]4):(1,—10,0), respectively.

deep in the dimer and antiferromagnetic phases of the phase
diagram shown in Fig. 2. The results for the chain with N
=24 sites are shown in Fig. 6. As can be seen from the figure,

the ground states for a broad region of large positive L,
have a significant overlap with the representative ground
state of the dimer phase, while the ground states for large

positive J /J4 and/or negative 72/ J, resemble very much the
one belonging to the antiferromagnetic phase. This behavior
indicates the appearance of the expected dimer and antifer-
romagnetic phases for large effective couplings |j 1|/J, and
|75]/J,. We have confirmed the existence of these phases in
the corresponding parameter regimes by studying the associ-
ated structure factors.

In order to study and clarify the properties of the system
in more detail, we have calculated the excitation energies,

AEn(S»Q)=En(SaQ)_Eg57 (15)

where E,(S,Q) is the energy of nth lowest level in the sub-
space characterized by the total spin S and the momentum Q,
and E, is the ground state energy. Figure 7 shows the results
for the system of size N=24 obtained along the vertical line
in the phase diagram given by Ji/Jy=2. At large positive
72/14, the ground and first-excited states belong to the sub-
space (S,0)=(0,0) and (0, ), respectively.”? These states

PHYSICAL REVIEW B 76, 075302 (2007)

J/J,=2,N=24

Sy

FIG. 7. (Color online) Excitation energies AE,(S,Q) in the sys-
tem of N=24 sites for 71/J4=2 as functions of 72/14. The two-
lowest levels are plotted for the subspaces of (S,0)=(0,0) and
(0, ), while only the lowest one is shown for all other subspaces.
The energies for (S,0)=(0,0), (0,7), and (1,7) are plotted by
thick solid, dotted, and dashed curves, respectively. The energies of
the levels belonging to other subspaces are shown by thin gray
curves.

are expected to form the ground state doublet of the dimer

phase in the thermodynamic limit. For -72/J4>(*72/J4)c,dim
~ 3.5, one of the dimer doublet states is the ground state and
the system is in the dimer phase. At smaller 72/ Jy4, both states
of the dimer doublet shift upward and move away from the
low-energy regime, while other states decrease steeply in
energy and eventually become the ground state. We therefore
take the point (J5/ J4)edim as the boundary of the dimer
phase. After the transition, the system enters a region with
exotic ground states and a large number of low-lying excita-
tions. We have numerically checked that these exotic ground
states have no or, at most, negligibly small overlap with the
ground state of either the dimer or antiferromagnetic phases.
When .72/ J,4 decreases further, the exotic states leave the low-
energy regime and the system predictably enters the antifer-
romagnetic phase, which occurs for J,/J,< (72/ J4) e AF
~0.1.

Performing the same type of analysis for several param-

eter lines, we can estimate the phase boundaries (72/J4)C,dim
and (]2/J4)C’AF as functions of jl/J4. In the limit of large
negative coupling J 1/Jy——=, the boundary of the dimer
phase (.PI“Z/J4)L.!dim approaches the line J,=-0.387,, suggest-

ing a smooth connection to the behavior for 71<0 and J,
=0 (cf. Ref. 48). In a similar fashion, at large positive cou-

pling J 1/J4, we find no indication for the appearance of ex-

otic phases after J 1/J4=6; the data of the energy spectrum
and the wave function overlaps show essentially the same

behaviors as those at J /J4— . We therefore conclude that
there occurs a direct transition between the dimer and anti-
ferromagnetic phases and estimate the transition line using
the method of level spectroscopy, according to which the
transition point is determined by the level crossing between
the first-excited states in the dimer and antiferromagnetic
phases.*?
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A

FIG. 8. The phase diagram of the Heisenberg chain including
nearest neighbor, next-nearest neighbor, and four-particle ring ex-
changes. The expected phases consist of a ferromagnetic and an
antiferromagnetic phase as well as a dimer phase. In addition, a
novel region (4P) dominated by the four-particle ring exchange
appears. The latter includes a phase of partial spin polarization (M).
Triangles, squares, and circles correspond to the boundaries ob-
tained for N=16, 20, and 24 sites, respectively. We note that al-
though the phase of partial spin polarization persists as the system
size is increased, its boundary with the 4P phase has a rather ir-
regular size dependence and is represented approximately in the
figure.

Combining all these phase boundaries and including the
boundaries of the ferromagnetic and partially spin-polarized
phases which were obtained using the total spin of the
ground state as a criterion, we determine the phase diagram

in the J. 1/ J4 versus 72/J4 plane. The result is shown in Fig. 8.
The phase diagram has similarities to the one obtained with-
out the four-spin interaction term (see Fig. 2). In particular,
the expected ferromagnetic, antiferromagnetic, and dimer
phases appear for large values of the effective couplings,

|7,/J, and |J,|/J,. However, more importantly, at not too
large values of the effective couplings, new phases appear as
a direct result of the new interaction term. We can identify a
phase with partial spin polarization and a region occupied by
one or several novel phases with total spin S=0. In the re-
gion where J, dominates, the ground state has no similarity
at the level of wave functions with that of the conventional
phases. It is important to note that the region occupied by the
new phases becomes broader as the system size N grows,
indicating that it survives even in the thermodynamic limit.
From the analysis of the wave function overlaps between the
ground states, there are strong indications that the novel un-
polarized region might consist of several different phases.
Unfortunately, it has proven difficult to clarify the nature of
the new phases and, in particular, discover the order param-
eters that characterize them based solely on the analysis of
small systems. Therefore, the issue is relegated to future
studies. In the absence of detailed understanding of its prop-
erties, we collectively dub the region of the phase diagram
the “4P” phase.
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TABLE II. The numerically calculated values of the density
dependent part F; of the exchange energy prefactor J; [see Eq. (16)]
calculated with mobile spectators. For all the numbers reported, the
accuracy is better than 2%, except for F, at v=1.0,1.1, for which
extrapolated values with an estimated error of ~10% are shown.

v F, F, Fs Fy
1.0 1.12 =6 1.22 2.44
1.1 1.04 =4 1.03 1.73
12 1.05 2.38 0.97 1.28
1.3 1.08 1.86 0.97 1.15
1.4 1.19 1.71 1.02 1.13
1.5 1.40 1.63 1.14 1.18
1.6 1.80 1.51 1.26 1.19
1.7 2.07 1.07 0.81 0.50

VI. PHASE DIAGRAM FOR REALISTIC QUANTUM
WIRES

Having identified possible phases of the zigzag chain, the
most interesting question is which of the various phases ap-
pearing in the phase diagram Fig. 8 are accessible in quan-
tum wires. At finite r, the calculations of the exchange con-
stants discussed in Sec. IV have to be completed in an
important way by computing the prefactors J; in Eq. (10). To
that effect, it is necessary to take into account Gaussian fluc-
tuations around the classical exchange path. We employ the
method introduced by Voelker and Chakravarty®® which, for
the sake of completeness, is outlined in the Appendix. The
prefactors have the form

2
v € _ i
J = —AFrg M\, (16)
eag 2m

where F, is density dependent. The factor A; is used to ac-
count for multiple classical trajectories corresponding to the
same exchange process (see Appendix). Table II contains the
values of F; we calculated for the various exchanges consid-
ered in this work. Note that, in order to achieve a comparable
level of convergence, a more accurate determination of the
instanton trajectories was required for the calculation of the
prefactors ]7 than for the calculation of the exponents 7. By
including up to 28 moving spectators on either side of the
exchanging particles, we have been able to achieve an accu-
racy better than 2%.

We are now in a position to map out the areas of the phase
diagram of Fig. 8 that are encountered as one traverses the
density region of interest for a given rq. The resulting phase
diagram obtained with the calculated exchange energies is
shown in Fig. 9. Since the semiclassical approximation is
applicable only at ro>1, we do not extend the phase dia-
gram to values of ro<<10. It turns out that the spin-polarized
phases are only realized at ro=50. On the other hand, the
novel 4P phase is expected to appear in a certain density
range as long as ro>1.
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FIG. 9. The phase diagram as a function of the dimensionless
density v and interaction strength rg. The various phases were ob-
tained by first calculating the effective couplings J 11J, and Jo1J,
for a given point; subsequently, the corresponding phase was deter-
mined utilizing the calculated boundaries shown in Fig. 8 for a
system of N=24 sites.

VII. DISCUSSION

In the preceding sections, we have studied the coupling of
spins of electrons forming a zigzag Wigner crystal in a para-
bolic confining potential. We have found that apart from the
two-particle exchange couplings between the nearest and
next-nearest neighbor spins, the three- and four-particle ring
exchange processes have to be taken into account. At rela-
tively low electron densities, when the transverse displace-
ment of electrons is small compared to the distance between
particles [Fig. 1(b)], the nearest neighbor two-particle ex-
change dominates. In this regime, the spins form an antifer-
romagnetic ground state, with low-energy excitations de-
scribed by the Tomonaga-Luttinger theory. At relatively high
densities, when the transverse displacements are large [Fig.
1(c)], the four-particle ring exchange processes dominate.
Since the ring exchange processes involving even numbers
of particles favor spin-unpolarized states, the ground state of
the system in this regime has zero total spin. Finally, if the
confining potential is sufficiently shallow, so that the param-
eter ro =50, there is an intermediate density range in which
the three-particle exchange processes are important, and the
ground state is spontaneously spin polarized. These results
are summarized in Fig. 9.

We expect that the zigzag Wigner crystal state can be
realized in quantum wires. In order for the zigzag crystal to
form, the confining potential of the wire should be rather
shallow, so that large values ro>1 of the parameter, [Eq.
(8)] could be achieved. The exact shape of the confining
potential in existing wires is not well known. Using the
quoted value of subband spacing of ~20 meV, we estimate
that the parameter r is of order unity in cleaved-edge-
overgrowth wires.”® The confining potential in split-gate
quantum wires tends to be more shallow. For a typical value
of 1 meV of subband spacing, we estimate r= 6. Finally,
for p-type quantum wires'>>* with subband spacing of
~300 eV, we estimate rg=20. These hole systems are the
most promising devices for observation of the zigzag Wigner
crystal.
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Given the relatively modest values of ro =20 in the ex-
isting quantum wire structures, we do not expect that the
spontaneously spin-polarized ground state will be easily ob-
served in experiments. Instead, we expect that as the density
of charge carriers is increased, a transition from antiferro-
magnetism to a state dominated by four-particle ring ex-
changes will occur. We have found that the ground state in
this phase has a complicated size dependence, which makes
it very difficult to identify its nature by exact diagonalization
of finite-size chains. To fully understand the spin properties
in the high density regime, further studies of zigzag ladders
with ring exchange coupling are needed.
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APPENDIX: CALCULATION OF THE PREFACTORS

In order to find the prefactors JT in the expressions for the
exchange constants, fluctuations around the instanton trajec-
tory have to be taken into account. The Euclidean (imaginary

time) path integral for the propagator G(R;,R,;7T)
=(R,|e"™|R,) can be written as
R(T)=R,
G(R,Ry;T) = DRe™/ASIR] (A1)
R(0)=R,
where the Euclidean action is given by
T 2
dR
SIR] = f dr[ﬂ<—> + V(R)}. (A2)
0 2\dr

Here, R is an M-dimensional position vector, where M/2 is
the total number of moving particles, including the exchang-
ing particles as well as the spectators. In the semiclassical
limit, the integral is dominated by the classical path R (7)
that extremizes the action S for a given exchange_process.
[The exponents 7 are given as 7=S[R.]/(A\rg).] The
Gaussian quantum fluctuations about the classical path can
be taken into account by defining fluctuation coordinates
u(7)=R(7)-R,/(7) and subsequently expanding the action
to second order. We obtain for the propagator

G(R},Ry;T) = F[R, Je/"5IRal, (A3)
u(7)=0

FIR,]= Du(7)e S]] (A4)
u(0)=0

T
6S[u(7)]=%f diu*(n) +u’(DH(Du(7n)], (AS)

0
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1 #V(R)
Hyp(1) = — .
m [?Rk[?Rp R=R (7

(A6)

In the preceding formulas, R; and R, correspond to two
configurations of electrons that minimize the electrostatic po-
tential V(R) describing electron-electron interactions as well
as the confining potential. The exchange constant is related
to the ratio of the propagator for a particular exchange pro-
cess R;—R,, divided by the propagator for the trivial path
Rcl( T)=R1’

F [Rcl]

o V/hSIRy]
~ FR,]

(A7)

We start from the expression for the propagator in the semi-
classical limit and proceed by partitioning the time interval
[0,T] into N subintervals (74, 7), (71, 7), ..., (Ty_1, Ty), With
7o=0, 7y=T. The partition is chosen sufficiently fine as to
enable the approximation that in each subinterval, the Hes-
sian matrix H(7) of the second derivative of the potential can
be considered time independent, H(7)=H(7,)=H". (In
what follows, we use the convention that for the fluctuation
coordinates, superscripts denote time subinterval, while sub-
scripts denote spatial coordinate.) Subsequently, the path in-
tegral is calculated as a product of path integrals over the
partitioned interval. Moreover, each individual path integral
is that of a multidimensional harmonic oscillator, for which
analytic results exist. We then have

F[R,]= f du'G(u',u’; 7 —7) - f du™!

XGN—I( - UN % S TN-1 — Th-2)

X Gy(u,u¥= (A8)

By =Ty,
and the propagator for each subinterval is

u(r,)=u”

G,wu'ir,-71,)= J Du(T)

m
Xexp{— ZﬁJ

Within each imaginary time subinterval, we define orthonor-
mal eigenvectors q;’L:EkleU}(’Mu,’g. The unitary matrix U” is
such that H'=U"A"(U")7, with A a diagonal matrix of ei-
genvalues ()\;)2, u=1, ..., M, where M is the number of
spatial coordinates. Then, one immediately obtains

) fQ(TV):qV m fTV
Ty = Ty-1) = ~z
q(r,_)=q""! 2h ),

Xdiq*(7) +q"(DAq(7)]

V—l) u”

ddw’(7) + uT(T)HVll(T)]} (A9)

=1

G,(q"q""; Dq(r)exp{—

= Flq Je”" o4, (A10)

where q,, is the classical trajectory connecting q*~' and q".
Considering the fluctuation part first, we obtain an elemen-
tary path integral,
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_ q(7,)=0 l m fT T
Flq.,|= T -— d T
(q.] oo Dq(7)exp o mq' (7)
x(-ﬁm )q(r)] H \/ (A11)
where

m\”
My

B’ = , Al2
® hsinh(N;AT,) (A12)

and A7,=7,—7,_;. The exponent 85[q,;] can now be calcu-
lated explicitly

5S[qcl] 1

- E B! {[(q})%+ (g))z]cosh(\;AT,)

- 2(q;)d(q;‘1)d}. (A13)

The subscript ¢/ used for notational clarity will be subse-
quently dropped from all expressions. With some additional
algebra, the remaining integral is easily evaluated. With the
following definitions:

M

m\”
Iy = u; —‘M—UV , Al4
kp % ki tanh(\;A7,) " (Al4)
M
m\”
Al = U, v, Al5S
kp El ““fi sinh(\/AT,) " (A15)
we find
N M )
(v
FIR]=m ™1 1T vB;, oo A9
v=1 p=1 /

where the M(N-1) X M(N-1) matrix Q,’;}; has components

Qv)\ (1-\ F,’;l)ﬁv’)‘ _ A]I:pév,()\ﬂ) _ A]){\pgv,()\—l).

(A17)

The calculation of F[R,] is carried out in an identical manner
and the subscript “0” will be used to distinguish the results
pertaining to that calculation.

Finally, one has to account for the existence of an eigen-
value of the matrix () which is identically zero in the con-
tinuum limit and corresponds to the zero mode associated
with uniform translation of the instanton in imaginary time.
The procedure is standard® and we simply report the result
for the prefactor here. One obtains

oo T( )‘/2N M | B, |detQ, (A18)
2ahm B” det’ Q°

v=1 p=1

where the primed determinant implies the exclusion of the
eigenvalue corresponding to the zero mode. Reverting to the
system of units used in this work, the prefactor of the ex-
change energy is given by
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) N M »
Jzze_A/rQ_S/4 \/lHH _V”_ \/—,0-
eap 2,5 w2t V By Vdet’
(A19)

The additional factor A; is used to account for multiple clas-
sical trajectories corresponding to the same exchange pro-
cess, as happens for the case of nearest and next-nearest
neighbor exchanges (i.e., A;=A,=2, whereas A;=1 for [=3).

The numerical implementation of the method outlined
above is straightforward. In particular, the quantity that
needs to be numerically calculated, once for each type of
exchange at all densities of interest, is

PHYSICAL REVIEW B 76, 075302 (2007)

N M
BV detQ()
F,= \l—”—\l—.
! HH B;’O det’ Q)

v=1 p=1

(A20)

We note here that the eigenvalue corresponding to the zero
mode is easily calculated with the same procedure used by
Voelker and Chakravarty.’® In the definition of the prefactor
[see Egs. (A4) and (A5)], one replaces H(7) with H(7)—N\,
with \ a free parameter. Subsequently, a numerical search for
the smallest eigenvalue that results in 1/F(\)=0 is carried
out. The smallest eigenvalue corresponds to the zero mode,
and for a finite partition of the imaginary time interval it is a
small but finite number.
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