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Strong repulsive interactions in a one-dimensional electron system suppress the exchange coupling J of
electron spins to a value much smaller than the Fermi energy Er. The conventional theoretical description of
such systems based on the bosonization approach and the concept of Tomonaga-Luttinger liquid is applicable
only at energies below J. In this paper, we develop a theoretical approach valid at all energies below the Fermi
energy, including a broad range of energies between J and Er. The method involves bosonization of the charge
degrees of freedom, while the spin excitations are treated exactly. We use this technique to calculate the
spectral functions of strongly interacting electron systems at energies in the range J <& <Er. We show that in
addition to the expected features at the wave vector k near the Fermi point kg, the spectral function has a strong
peak centered at k=0. Our theory also provides analytical description of the spectral function singularities near

3kp (the “shadow band” features).
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I. INTRODUCTION

Recent experiments with quantum wires'~!! and carbon
nanotubes'>!3 have stimulated theoretical interest in trans-
port properties of one-dimensional systems of interacting
electrons. It is now widely accepted that in one dimension,
interacting electrons form the so-called Luttinger liquid.'*!3
The main signature of the Luttinger liquid—the power-law
behavior of the tunneling density of states—has recently
been observed in experiments.''~!31¢ Another well-known
prediction'”!" of the Luttinger-liquid theory is that the con-
ductance of a quantum wire connecting two-dimensional
leads should be quantized in units of 2¢?/h, regardless of the
interaction strength. Although the quantization of conduc-
tance is routinely observed in modern experiments, careful
recent measurements show significant deviations® ! from
perfect quantization in the regime of very low electron den-
sity, where the effective electron-electron interactions are
very strong.

The applicability of the Luttinger-liquid theory is not ex-
pected to be limited to weak interactions. On the other hand,
the properties of the system do change significantly when the
interactions become strong. It is well known that at low en-
ergies, one-dimensional electron systems support separate
charge and spin excitation modes propagating at different
velocities,”® v, and v,. Accordingly, the Luttinger-liquid
theory describes the low-energy excitations of the system by
two bosonic fields with linear dispersion, propagating at ve-
locities v, and v,. The applicability of such a description is
limited to energies small compared to the bandwidths of the
charge and spin excitations D, ,~%v, n, where n is the
electron density. In the noninteracting case, both velocities
coincide with the Fermi velocity vy, so D,=D,~ Ep. In the
presence of weak repulsive interactions, the velocities are
renormalized so that v,<v,, but both velocities remain of
order vp. At strong interactions, the spin mode velocity v, is
strongly suppressed, v,<<v,. In this case, D,<Ep=<D,, and
the Luttinger-liquid theory is applicable only to phenomena
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in which all the relevant energy scales are smaller than D,,.

A number of recent theory papers*'—? addressed the phys-
ics of strongly interacting electrons beyond the range of ap-
plicability of the Luttinger-liquid theory. Penc et al?'-?
studied the tunneling density of states and spectral functions
of the one-dimensional Hubbard model at energies in the
range D,<e<D, and zero temperature. Cheianov and
Zvonarev?*? and Fiete and Balents?® explored the so-called
spin-incoherent regime®' D, <T<D , and found an enhance-
ment of the tunneling density of states at energies £>T7.
Conductance of the quantum wire entering the spin-
incoherent regime was predicted?®?° to show behavior simi-
lar to the anomalies observed in experiments.’~'°

Despite the recent theoretical successes in treating
strongly interacting one-dimensional electrons, at present,
there is no regular theoretical technique that can be applied
to a broad class of problems and is not limited to the exactly
solvable models.?'=?° In particular, the bosonization tech-
nique commonly used to justify the Luttinger-liquid
picture'*!3 is applicable only at energies below the spin
bandwidth D,. In this paper, we generalize the bosonization
technique to all energies below the charge bandwidth D,,.
Our method treats the spin excitations exactly, but applies
bosonization to the charge excitations. It is thus applicable to
a broad class of strong interactions, and is not limited to
short-range coupling required for the existence of the exact
solutions.

We apply our technique to the calculation of the spectral
functions and the tunneling density of states of strongly in-
teracting one-dimensional electron systems. Unlike many of
the earlier treatments,?'~2> our calculations can be applied to
systems with long-range interactions, such as quantum wires.
In addition, our theory is valid in a broad range of tempera-
tures: we obtain the spectral functions at zero temperature, in
the spin-incoherent case 7>D,, and also interpolate be-
tween these regimes. Furthermore, our approach provides a
clear physical picture of the enhancement?'-?#-26 of the tun-
neling density of states v(g) at |e| <Ep.
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Our approach is introduced in Sec. II, where we derive the
expression for the electron field operators at energies below
D, by bosonizing the charge modes while treating the spin
excitations accurately, as excitations of an effective Heisen-
berg spin chain with a small exchange constant J. At energies
below D,~J, the spin excitations can also be bosonized.
This is accomplished in Sec. III, where we also demonstrate
that the standard bosonization expression for the electron
operators'+!3 is recovered in our approach when all impor-
tant energy scales are below J. Calculation of various physi-
cal properties of the system requires knowledge of the elec-
tronic Green’s functions discussed in Sec. IV. In the most
interesting regime of energies, |&|>J, the Green’s functions
are expressed in terms of certain equal-time correlation func-
tions ¢*(g) of the Heisenberg spin chain. Their behavior is
important for understanding the electronic transport at ||
>J; it is discussed in Sec. IV. We calculate the spectral func-
tions at energies J<<|e|<Ey in Sec. V and show that their
dependence on the wave vector k has a Gaussian peak cen-
tered at k=0, which determines the behavior of the tunneling
density of states. In addition, we find power-law singularities
in the spectral functions at k near kg, as well as the shadow
band features®?> near 3kz. We conclude the paper with the
discussion of our results in Sec. VI. A brief summary of
some of our results was reported in Ref. 32.

II. BOSONIZATION OF CHARGE EXCITATIONS

The most experimentally relevant one-dimensional sys-
tem of strongly interacting electrons is realized in GaAs
quantum wires.>!% In these devices, the spectrum of elec-
trons is quadratic, and the system can be described by the
standard Hamiltonian

ﬁZ
He 2 [ i ar

1
+5 f j PP V(x = ) () (x)dxdy. (1)

Here, m, is the effective mass of electrons, (ﬂy(x) is the an-
nihilation operator of electron with spin y (summation over
repeating spin indices is implied), potential V(x—y) describes
the interaction between electrons, and J,=d/dx.

The assumption of quadratic spectrum in Hamiltonian (1)
is introduced for simplicity, and most of the results we obtain
apply to a generic spectrum. In particular, our theory is ap-
plicable to the one-dimensional Hubbard model, with an im-
portant exception of the half-filled case, where the charge
excitation spectrum is gapped.

The effect of interactions on the low-energy properties of
the system is quantified by the parameters 7,=V(0)/#v and
n,=V(2kp)/hvp, where V(gq) is the Fourier transform of the
interaction potential. Parameter 7, controls the amplitude of
forward scattering of two electrons at the Fermi surface.
Positive value of 7, leads to the enhancement of the velocity
of charge excitations v, over the Fermi velocity. Parameter
7, controls the amplitude of backward scattering of two elec-
trons. Strong backscattering impedes propagation of spin ex-
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FIG. 1. (Color online) One-dimensional electrons at strong
backscattering. Each electron is confined to the region of space
between the neighboring particles. Shaded regions represent strong
repulsive interactions.

citations through the system and leads to the suppression of
the spin velocity v,,. In the case of short-range interactions,
the two parameters are of the same order of magnitude. On
the other hand, in quantum wires, the electrons interact via
long-range Coulomb repulsion, which is usually screened at
a large distance d by a metal gate. In this case, /7,
~In(nd). Throughout this paper, we assume strong back-
scattering, 7,> 1.

A. Effective Hamiltonian

In the limit 7,— o, collisions of two electrons with op-
posite spins result in complete backscattering. In this case,
the processes of spin exchange are completely suppressed,
and the energy of the system no longer depends on the spin
degrees of freedom. To find the energy of any state, one can
assume that all the spins y=1 or, equivalently, assume that
the fermions in Hamiltonian (1) are spinless, #,(x) — W(x).
The resulting Hamiltonian

h? +
H,=- 2_’7% f v (x)&)zc\lf(x)dx

+ % f f Vi)W (y)Vx - y) V() ¥ (x)dxdy (2)

describes the charge excitations in the system. Each eigen-
state of Hamiltonian (2) for a system of N electrons is a
degenerate multiplet of 2V spin states.

In this paper, the spinless fermions W(x) will be referred
to as holons. By construction, their number equals the total
number of electrons,

W)W () = ¢ (0) i (x) + o] () (x). 3)

In the limit of short-range coupling, V(x—y)=V,8(x—y), the
interactions in Hamiltonian (2) disappear due to the Pauli
principle, W(x)W(x)=0, and holons become free fermions.
This fact is well known in the theory of the Hubbard model
at strong interactions.

The physical picture of one-dimensional electrons in the
limit of strong backscattering is illustrated in Fig. 1. Due to
the strong repulsive interactions, electrons cannot pass
through each other. As a result, electron / is always confined
between electrons /—1 and /+1, and their spins cannot move
through the system.

At strong but finite repulsion, the amplitude of forward
scattering of electrons does not vanish. Such processes give
rise to a weak exchange of the spins at the neighboring sites,
e.g., I and [+1. To leading order, the coupling of the next-
nearest neighbors can be neglected. The symmetry with re-
spect to spin rotations dictates the form of coupling between
the spins:
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Hy=2JS; S (4)
1

The exchange constant J is positive, as otherwise the ground
state of a system of one-dimensional electrons would have

been spin polarized, in violation of the Lieb-Mattis
theorem.?*
Thus, we conclude that the Hamiltonian of a one-

dimensional system of strongly interacting electrons can be
written as a sum H,+H,. In the case of the Hubbard model,
this was first noticed by Ogata and Shiba,’* who discovered
that in the limit of strong repulsion, the Bethe ansatz ground
state of the system factorizes into a direct product of the
ground state of noninteracting fermions (holons) and the
ground state of the Heisenberg spin chain [Eq. (4)]. In the
context of quantum wires, the description based on the
Hamiltonian H,+H, was used in Refs. 28 and 29. The long-
range nature of the Coulomb repulsion between electrons in
a quantum wire results in the exponential suppression of the
exchange constant,?%3-37

. 2.80
J=J exp(—/=>. (5)

\napg

Here, the prefactor J* ~ Ex(nag)~>*, the Bohr radius is de-
fined as az=eh?/m,e?, and € is the dielectric constant.

It is worth mentioning that one can replace Hamiltonian
(1) with the sum of two independent Hamiltonians (2) and
(4) only at sufficiently low energies. Indeed, the backscatter-
ing amplitude for two electrons with wave vectors =k is
V(2k)/hv, and tends to zero at k—oo for any reasonable
interaction potential. (Here, v,=fk/m is the velocity of an
electron with wave vector k.) Thus, at high energies, the
initial assumption of strong backscattering is violated. To
find the region of applicability of our low-energy theory, one
can estimate the correction to exchange constant (5) caused
by the fact that at higher energies, the distances between
electrons fluctuate, and the density n is no longer constant.
Given that the rigidity of the Wigner crystal is due to the
Coulomb repulsion between the electrons, we estimate on
~\m,nag|e|/h, and the exchange J acquires significant cor-
rections in the presence of excitations with energies |
= (#in)*/m,~ Er. Thus, our subsequent results are valid up
to energies of order Ep, rather than the somewhat higher
energy scale D,~ EpyIn(nd)/nag. In the case of short-range
interactions, the scales D, and Ej are of the same order of
magnitude.

B. Electron creation and destruction operators

Effective Hamiltonian (2), (4) is defined in terms of the
holon field operators W(x) and the spin operators S, rather
than the original electron operators ¢ |(x). In order to apply
the effective theory (2), (4) to problems formulated in terms
of electrons (e.g., calculation of the spectral functions), we
need to establish the relations between the electron operators
and the new variables.

In the context of the Hubbard model, this issue was ad-
dressed by Penc et al.,>' who used the definition

PHYSICAL REVIEW B 76, 155440 (2007)

¥i0) =7 (0)Z .- (6)

Given relation (3) between the densities of electrons and ho-
lons, creation of an electron at point 0 must be accompanied
by creation of a holon. In addition, when a new particle is
added to the system of N electrons, spin chain (4) acquires an
additional site. This is accounted for by the operator Zo By
definition, operator ZT 1,y adds a new site with spin y to the
spin chain between the sites /—1 and /.

Despite the fact that rule (6) leads to a number of correct
results when applied carefully,”!>? it is not a completely sat-
isfactory expression of an electron creation operator in terms
of the charge and spin degrees of freedom. In particular, the
generalization of Eq. (6) to x#0 is not straightforward.?
The origin of the difficulty lies in the fact that unlike the
electrons and holons, the spins in Hamiltonian (4) are not
assigned to specific points in space. When an electron is
created at point x, the additional site in spin chain (4) appears
at [=[(x), where

x+0

I(x) = Wi(y)W(y)dy (7)

—o0

is the number of electrons (or holons) between —0 and point
x. We shall therefore define the electron creation and annihi-
lation operators as

Y0 = Zjy W (), (8a)

‘//'y(x) = lp(x)zl(x),y' (Sb)

The most important difference between expressions (6) and
(8a) is that the latter explicitly accounts for the fact that the
spins are attached to electrons. Thus, despite the apparent
separation of the charge and spin degrees of freedom in ef-
fective Hamiltonian (2), (4) electron creation operator (8a)
does not factorize into a product of two operators acting on
only charge or only spin variables.’® In Appendix A, we
show that our operators (8) satisfy the appropriate anticom-
mutation relations.

C. Bosonization of holon operators

In this paper, we are interested in the properties of
strongly interacting one-dimensional systems at energies
well below the Fermi energy, |e|<Ep. In this case, the dy-
namics of the charge degrees of freedom described by
Hamiltonian (2) simplifies dramatically. Indeed, it is well
known that the low-energy properties of a system of inter-
acting spinless fermions are accurately described by the
Tomonaga-Luttinger model,'*!3

= z—vﬂ J [K(3,6)* + K™ (3,¢)*]dx. 9)

Here, ¢ and 6 are bosonic fields satisfying the commutation
relations [ ¢p(x),d,0(y)]=mid(x—y). Field 6 is related to the
momentum density of the system, p(x)=find,0(x), whereas ¢
is defined in terms of the density of fermions,
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V() = K+ 3,600]. (10)

Here, we have introduced the Fermi momentum of the ho-
lons kﬁ’p. Considering that the total electron density equals the
holon density, Eq. (3), we have n=2kz/ w:k’}/ . Thus, the
Fermi wave vectors of holons and electrons are related by

k= 2kp. (11)

Finally, the parameter K=<1 in Hamiltonian (9) is the so-
called Luttinger-liquid constant.

Transformation of the Hamiltonian H, from fermionic
form (2) to the bosonic form (9) is accomplished via
bosonization procedure,'*!> in which the fermion operators
¥ are expressed in terms of the bosonic fields ¢ and 6. At
the first step, one notices that at low energies, the properties
of one-dimensional Fermi systems are dominated by excita-
tions near the two Fermi points. Particles near each of the
Fermi points propagate in one of two possible directions,
right or left. Thus, the fermion operator is presented as a sum
of two chiral fermions,

W (x) =Wr(x) + ¥ (x), (12)

where the operators W and WV, destroy fermions with wave
vectors near the right and left Fermi points, respectively.

The chiral fermion operators are bosonized following the
prescription

W (x) = 1000 g ilKx+d0)] (13)

\2ma

where « is a short-distance cutoff.
Using relations (7), (10), (12), and (13), we express elec-

tron annihilation operator (8b) in the form
e—i&(x)

w'y(x) =T
V27a

(ei[kﬁﬁd)(x)] +e

_ih
et Z) iemiider g

(14)

Unlike original formula (8b), this expression is valid only at
low energies, |&| < Ep. Its advantage is that the charge modes
are now presented in the form of noninteracting bosons [Eq.
(9)] and can be treated rather easily. We apply expression
(14) to the calculation of the electron Green’s functions at
J, T<|e|<E in Sec. IV.

III. BOSONIZATION OF SPIN EXCITATIONS

As we discussed in Sec. I, the conventional Tomonaga-
Luttinger theory'*!> of low-energy properties of one-
dimensional electron systems is based on the idea of
bosonization of electron operators. Mathematically, this cor-
responds to applying procedure (13) to annihilation operators
of electrons with spins y=1, |,

e

ikpx _ _
N2 p(x)=0,(x)] (il \’2)[¢U(X)—90(X)]’
27

l//R ‘y(x) =

(15a)
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—ikpx

o~ N[ B,()+6,(0)], % (N[ B (x)+05(0)]

wL y(x ) =

e
|
27T

(15b)

Here, ¢,, and 6,, are the bosonic fields describing the
charge and spin excitation modes of the system. In terms of
these fields, the Hamiltonian of interacting electrons (1)
takes its bosonized low-energy form H,+H, with

Hp=f;—ff f [K,(3,6,) + K, (9,¢,)°1dx,  (16a)

h
H,= —2”“ f [K,(3,0,)% + K, (3,6b,) Tdx
ar

281,
(2ma)?

f cos[\8,(x)]dx. (16b)
Here, the matrix element g;, accounts for the processes of
backscattering of two electrons with opposite spins. The re-
spective sine-Gordon term in Hamiltonian (16b) is margin-
ally irrelevant. In the absence of magnetic field, the SU(2)
symmetry of the problem requires'> that when g, scales to
zero, the Luttinger parameter K,— 1.

Hamiltonian (16) is typically derived under the assump-
tion that the electron-electron interactions are weak. On the
other hand, it represents a stable low-energy fixed point of
the theory, and thus should be valid beyond the weak-
interaction approximation. Although the nature of the low-
energy fixed point can, in principle, change at a finite value
of the interaction strength, such a change would imply a
quantum phase transition, which is generally not expected.
The more likely scenario is that Hamiltonian (16) is the cor-
rect low-energy description of one-dimensional electron sys-
tems at arbitrarily strong interactions. Under this assumption,
one should expect to be able to show that at low energies (i)
Hamiltonian (9), (4) is equivalent to Eq. (16) and (ii) at the
same time our expression (14) for the electron destruction
operator transforms to Eq. (15). We now show that this is
indeed the case.

A. Low-energy Hamiltonian of strongly interacting electrons
in one dimension

First, we notice that expressions (9) and (16a) for H,, are
very similar, as they both describe acoustic excitations in the
charge channel propagating at speed v,,. Although it is natu-
ral to assume that K, ¢, and 6 in Eq. (9) should be identified
with K, ¢,, and 6, in Eq. (16a), respectively, this is not the
case. The correct approach is to ensure that the physically
observable quantities, such as electron density (3), have
equivalent expressions in both theories. In the standard
bosonization description based on Eq. (15), the electron den-
sity is given by

V2

2k /
PP () + ] (0 (x) = f a0, (7)

Comparing this expression with Egs. (3), (10), and (11), we
conclude
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B(x) = \2,(x).

Then, to preserve the proper commutation relations between
bosonic fields, one has to assume

(18a)

1
0(x) = —=0,(x). (18b)
V2
Finally, substituting Egs. (18a) and (18b) into Hamiltonian
(9), we recover Eq. (16a) if

K=2K,. (18¢)

Turning to the spin Hamiltonian H;, we note that there is
a well-known procedure'> of bosonization of Heisenberg
model (4). One starts by converting spin operators S; to spin-
less fermion operators a; via the Jordan-Wigner transforma-
tion

-1
1 ,
S?:a;a,—i, Sf+iS§:alTexp<i7TEa;aj). (19)
=1

In terms of the spinless fermions, the Hamiltonian H, takes
the form

H,=H® + I, (20a)
Xy 1 T il
HY = EE Jajay, +aj,a), (20b)
1
1 1
H'=, J(a;a, - 5)<a;+1al+1 - 5) (20c¢)
1

Thus, Heisenberg model (4) is reduced to the tight-binding
model of spinless fermions with repulsive interactions be-
tween particles at the nearest-neighbor sites.

The steps leading from Eq. (4) to Eq. (20) are exact, and
the spectra of the two Hamiltonians are identical at all ener-
gies. At energies much smaller than J, one can simplify
Hamiltonian (20) by bosonizing the Jordan-Wigner fermions.
One starts by considering the noninteracting model given by
Eq. (20b). The spectrum of that Hamiltonian is obtained as
the sum of energies €(g) of independent spinless fermions,

e(q) =J cos gl, (21)

where the wave vector ¢ varies from O to 2.

In the absence of external magnetic field, one expects
(S5)=0. According to Eq. (19) band (21) is half-filled, and
the two Fermi points are at

7 37 (22)
qL= 2’ qr= 7
The bosonization is accomplished by presenting the operator
a; as a sum of operators destroying the right- and left-moving
particles,

CllzaR(l) +aL(l), (23)
where
1 o
ag(§) = —=-e"1rée¥rY, (24a)
\2ma
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larép-ieL(©)

ar(H)=—— (24b)

\N2ma

Since the bosonization description concentrates on the range
of momenta close to the Fermi points, the discrete site num-
ber [ is replaced here with the continuous coordinate & (Un-
like the coordinate x of electrons, £ is dimensionless.) The
chiral bosonic fields ¢ and ¢; satisfy the commutation re-
lations

[or(8),dp op(&§)]=—2mid(E-¢), (25a)
[or(8).0p @ (E)]=2mid(E- &), (25b)
[@r(&),d0r(€)]=0. (25¢)

Upon bosonization (24), Hamiltonian (20b) takes the form

HY = %T f [(G0r)? + (Ogpr)1dE. (26)

The next step of the bosonization procedure is to convert to
nonchiral bosonic fields

1 1
<P=5(€DL+ ®r) 19:5((PL—<PR)- (27)

As a result, Hamiltonian (26) takes the form
ho 1
Hy=— | | K(3:9)* + —=(9:0)* |d§, 28
; sz (969) ,Cugo)} £ 0%

with 0=J/A and K=1.

When interaction term (20c) is added to Hamiltonian
(20b), and bosonization transformation (24) is applied, the
parameters 0 and I change, and an additional term appears
in the Hamiltonian,

f cos[4¢(§)]dé, (28b)

T 2ma)?
with g~ 1.
Hamiltonian (28a) is equivalent to spin part (16b) of the
Hamiltonian of weakly interacting electron system if one as-
sumes

1
¢(&) = = (&), (29a)
V2
&) =26,(&n), (29b)
U=v,n, (29¢)
K(T
=5 (29d)

In the absence of magnetic field, as cosine term (28b) scales
to zero at low energies, the Luttinger parameter C ap-
proaches 1/2, as required by the SU(2) symmetry of the
problem.'> Thus, Eq. (29d) is consistent with the similar re-
quirement K,— 1 in Hamiltonian (16b).
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FIG. 2. Ground state of the system of noninteracting fermions
[Eq. (20b)] for the case of 16 sites and 8 fermions. Filled circles
show wave vectors and energies of the 8 occupied single-particle
states. (b) Ground state of the same problem with 15 sites.

B. Bosonization of the operators Z,; ,,

In order to demonstrate that in the regime of low energies
|| <J electron destruction operator (14) takes standard form
(15), one needs to bosonize the operator Z, ,, in Eq. (14). We
start with Z, |. This operator acts on an arbitrary state in the
Hilbert space of Hamiltonian (4) with N sites. If the spin at
the site /=0 is |, the operator Z,, | removes that site from the
spin chain; if the spin is T, the outcome is zero. The Jordan-
Wigner transformation [Eq. (19)] defines one spinless fer-
mion per each site with spin 1. Thus, the operator Z; | re-
moves site /=0 from tight-binding model (20b) without
changing the number of fermions N,.

To derive the bosonized form of Z Is it is convenient to
consider its effect on the eigenstates of noninteracting model
(20b). The latter are Slater determinants of plane waves with
wave vectors in the range 0<g; <27 and energies €(g;)
given by Eq. (21). To determine the allowed values of wave
vectors ¢g;, we assume periodic boundary conditions on the
spin chain, Sy=Sy. Because of the Jordan-Wigner string in
definition (19) of the spinless fermions, their respective
boundary conditions are either periodic or antiperiodic, de-
pending on the parity of their number N,

al=(= 1)V "a]. (30)

Thus, the wave vectors of the fermions take the values

2T
—j for odd N
N] or o ¢
G=) 5 (31)
W(j + %) for even Ny,

where j=0,1,... ,N-1.

The ground state of Hamiltonian (20b) is illustrated in
Fig. 2(a). Upon removal of one site from the chain, the al-
lowed values of the wave vector increase slightly,
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N .

QjHQjEzCIj"'zNZ- (32)
The effect of the operator Z; | on the eigenstates of H* can
be interpreted as follows. By removing a site from the spin
chain, Z, creates a scattering potential for the Jordan-
Wigner fermions near £=0. Only forward scattering is
present, and the wave functions of the fermions acquire
phase shifts proportional to the wave vectors,

el9€ _, platp=ila2)sgn(§) (33)

When the periodic boundary conditions are imposed on the
fermions, the phase shift in Eq. (33) moves the allowed val-
ues of the wave vectors by ¢/N, in agreement with Eq. (32).

In the bosonization treatment of the spin chain, one con-
centrates on the vicinities of the two Fermi points g and g,
where the fermions are classified as either right or left mov-
ing, Eq. (23). According to Eq. (33), the operator Z; | trans-
forms the fermion operators as

aR,L(f) - Zo,iaR,L(f)Z(T),l = aR,L(f)e_i(qR’le)sgn(g)- (34)

Using bosonized representation (24) of the fermion operators
and commutation relations (25), we conclude that

Zy, = CXP{— %T[QL‘PL(O) + C]RGDR(O)]} . (35)

Here, we omit a numerical prefactor, which depends on the
specific cutoff procedure used in the bosonization scheme,
but can be considered to be of order unity.

To find the bosonized expression for Z; | away from the
point /=0, it is not sufficient to replace the arguments of ¢;
and ¢g with [. Indeed, our derivation of Eq. (35) allowed for
an arbitrary phase factor, which may depend on /. To deter-
mine this phase factor, we notice that

Zl,’y= e_inZO’yein, (36)

where Q is the operator of the total momentum of the sys-
tem. (This relation becomes clear if one notices that the op-

erator e'?! shifts the spin chain by [ sites to the left.) Sum-
ming the changes of wave vectors (32) for all particles
between Fermi points (22), we conclude that Z; , increases Q
by /2. Thus, we obtain

T 3i
Z; = —i—l——=¢;(l)— —oep(l) |, 37
1| = €Xp 12 4<PL( ) 4 er(D) (37)

where we have also substituted into Eq. (35) the values of
Fermi wave vectors (22).

The apparent asymmetry between the left and right mov-
ers in Eq. (37) can be understood by noticing that interpre-
tation (32) of the changes of wave vectors of the fermions is
not unique. Instead of assuming that as we remove a site
from the spin chain, the fermion states in Fig. 2(a) transform
into those of Fig. 2(b) by shifting to the right, Eq. (32), one
can assume that all the states move to the left,
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N 2
- — =
G917 NZ1

q;=2m

N (38)

qj+
As a result, the system arrives at a new ground state on the
(N—1)-site lattice, which is the mirror image of the state
shown in Fig. 2(b). One can repeat the above arguments
leading to Eq. (35) and obtain the new expression by replac-
ing gg;—qg;—2m. Similar to the presentation of the fer-
mion operators «; as a sum of two chiral contributions (23),
we conclude that

T i 3

Z = —i—l——@; (1) — — gl
1] exp[ 12 4(PL() 4(PR():|
3i

LoD+ flch(n]. (39)

&
+ exp i +

Apart from these two contributions, the operator Z; | may
contain terms corresponding to greater shifts of the fermion
states in the momentum space. They can be obtained by add-
ing any multiples of 277/ N to the right-hand side of Eq. (32).
Such terms can be viewed as operator (35) combined with
(a,fag)™ or (ag'a;)™. At low energies, such terms are less
relevant than leading contributions (39) and can be ne-
glected.

A similar bosonization procedure can be performed with
operator Z, ;. In addition to shifts (32) of the wave vectors of
the allowed fermion states caused by the change of system
size N—N—1, one also needs to account for the change in
the fermion number, NfHNf—l. The latter changes wave
vector quantization conditions (31) and removes a particle
from either the right or the left Fermi point. The two contri-
butions resulting from such treatment are

2 =expl = i1 o)+ S on)
1,1 = €Xp 12 4<PL 4<PR

o 3 i
+exp| il — =g, (1) - ~er(l) |. 40
eXp[l2 4<pL() 4QDR():| (40)
Replacing the chiral bosonic fields in Egs. (39) and (40) with
their nonchiral versions [Eq. (27)], we find

Zl y=ei(ﬂ'/Z)leIi[qo(l)+(1/2)19(l)]+ e—i(ﬂ-/2)le:i[<p(l)—(1/2)19(1)]’
(41)

where the upper and lower signs correspond to y=1 and |,
respectively. A generalization of bosonization rule (41) to the
case of nonvanishing magnetization is discussed in Appendix
B.

C. Two-step bosonization procedure for the electron operators

In this paper, we consider one-dimensional electron sys-
tems with strong repulsive interactions, when the spin ex-
change between electrons is strongly suppressed, J<<Ep. In
such systems, the bosonization of electron operators ,(x)
can be performed in two steps. At energies |e| below the
Fermi energy Ep, the charge excitations can be bosonized,
and the fermion operators take form (14). This expression
does not assume a specific relation between & and J, so the
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spin excitations are accounted for accurately by the operators
Z;,. On the other hand, if |¢|<J, the spin excitations can
also be bosonized [Eq. (41)]. To compare the resulting ex-
pression for the electron destruction operators with those
used in the standard bosonization procedure [Eq. (15)], we
substitute Eq. (41) into Eq. (14). This substitution results in
four terms in the expression for ,(x). To identify the anni-
hilation operator for the right-moving electron [Eq. (15a)],
we combine the first term in the brackets in Eq. (14) with the
first term in the right-hand side of Eq. (41). This yields

wR y(x )

—i6(x)

= & ik i)l il e (D-(112) (D]
27 I=(1 /) [k ()]
K '

_ 5 o100 i12) ) il p(nx)~(1/2) D(nx)] (42)
2T

Expressing the bosonic fields via ¢, , and 6, , with the help
of Egs. (18a), (18b), and (29), we find that our result (42) is
equivalent to the standard expression [Eq. (15a)]. Similarly,
combining the second term in the brackets in Eq. (14) with
the second term in the right-hand side of Eq. (41), one re-
produces the bosonized expression for the annihilation op-
erator (15b) of the left-moving electrons.

To understand the meaning of the remaining two contri-
butions to 1/1y(x), let us consider the momenta of the charge
and spin excitations in Eq. (42). By destroying the right-
moving holon, we change the momentum of the system by
k1}=2kp. Thus, to obtain expression for annihilation operator
of electron with momentum near the right Fermi point kg, we
chose the left-moving component of the operator Z; ,, which
reduces the momentum change by k. By choosing the other
component of Z; ,, we increase the total momentum change
to 3ky. The physical meaning of such process amounts to
removing an electron from the right Fermi point with simul-
taneous transfer of another electron from the right to the left
Fermi point. In interacting electron systems, such processes
are possible, but the resulting “shadow band” features tend to
be weak.

IV. GREEN’S FUNCTIONS

A number of important physical properties of one-
dimensional electron systems, such as the tunneling density
of states and the spectral functions, are expressed in terms of
single-electron Green’s functions,

G(x,1) = (i, (x, ) (0,0)), (43a)

G(x,1) = (1(0,0) ¢ (x,1)).. (43b)

It is well known that in the limit |¢| —c, the Green’s func-
tions show nontrivial power-law behavior, with exponents
depending on the interaction strength.?® This behavior is eas-
ily obtained’ in the bosonization approach based on Eq.
(15). In the case of strongly interacting electrons, these re-
sults are valid at |¢f|>#/J and adequately describe the phys-
ics of the system at low energies |g| <J<Ep.
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In this paper, we are primarily interested in the regime of
intermediate energies, J < |e| < Ej. To find the Green’s func-
tions in this case, instead of Eq. (15), one can use the more
general expression (14). We start by transforming electron
annihilation operator (14) to a more convenient form.

A. Annihilation operator for strongly interacting electrons

We first rewrite the lattice operators Z, , in Eq. (14) in
terms of their Fourier components,

T dq .
Z4=[W5;@@kﬂ, (44)
2(q)= 2 Z; 7 (45)
J=—o

Straightforward substitution of Eq. (44) into Eq. (14) yields

—if(x) (T

. h
l,b (X) - —; (q)[et(1+q/7r)[kFx+¢)(x)]
4 2mal_, 27"
+ ei(—l+q/77)[k‘,’,—x+¢(x)]]. (46)

The two terms in the integrand correspond to removal of
right- and left-moving holons, respectively.

Expression (46) can be simplified by noticing that z,(g) is
a 2ar-periodic function of ¢,

e—i ox) [

dq . h
lﬂy(x) = \ZTV _Zy(q)ez(1+q/w)[kfx+¢(x)]_ (47)

2T

=3

This presentation of the fermion operator is not entirely sat-
isfactory, because the limits of integration here and in Eq.
(44) were set rather arbitrarily. Indeed, the argument of the
operator z,(g) is the change of momentum of the spin sub-
system when an electron is removed. Since spins in Hamil-
tonian (4) are attached to lattice sites, the momentum
changes by g or g+2m, g+4m, etc., are equivalent. This
symmetry is lost in bosonized expression (47), but can be
restored by extending the limits of g integration,

—if(x) [

dC] i T, hx X
)= | ag)e el (4g)
V2T J —

The origin of the ambiguity in the definition of the fer-
mion operators can be traced back to the bosonization of the
holon operators in Eq. (8b). Indeed, by definition (7), the
operator [(x) has only integer eigenvalues equal to the num-
ber of electrons in the region of space from — to x, whereas
its bosonized expression I(x)= %T[k’}x+ ¢(x)] does not explic-
itly possess this property. To enforce the discreteness of
charge in Eq. (14), one can understand Zy,, ,, as

1
Zz,y|1:(1/w)[k’;x+¢(x)] - Zl,yg(;[kilf‘x + p(x)] - 1)~
/

(49)

Then, upon Fourier transformation (44), one recovers Eq.
(48).
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A similar procedure of bosonization of fermions while
preserving the discreteness of their number was suggested by
Haldane.’® Apart from the two terms corresponding to the
right- and left-moving fermions, the expression for the fer-
mion operator contains multiparticle contributions with wave
vectors near +3ky, +5kp, etc. In a typical bosonization cal-
culation, these additional terms give much smaller contribu-
tions than the leading ones. Thus, the difference between the
results obtained using the two bosonization schemes is
smaller than the accuracy of the bosonization approximation
and can be ignored. In our case, by using expression (47)
instead of Eq. (48), one obtains small spurious features in the
spectral function originating from the arbitrarily chosen inte-
gration limits. Thus, from now on, we use Eq. (48).

B. Green’s functions at intermediate energies

At small J, the time evolution of the spin degrees of free-
dom is very slow, with the typical time scales of order #/J.
Therefore, to find the Green’s functions describing physical
phenomena at relatively high energies |&|>J, one can ne-
glect the time dependence of the correlators of operators Z,; .
Then, the substitution of Eq. (48) into definitions (43) of the
Green’s functions yields

1 (7 dg . h
+ - + i(1+q/m)kpx *
G(x.1) = 27Taf_w 271_cy(q)e IR (x,1). (50)

Here, the static correlators ¢(q) are defined by

)= 242,26 e,

l

(51a)

clq)= ; (Z§Zipe™™, (51b)

where (---) denotes thermal averaging over the equilibrium
states of Hamiltonian (4). The time dependence is contained
in the correlators g;, defined in terms of the charge variables,

g+(x f) — <ei[(l+q/77)¢(x,t)—0(.7(,[)]6—1'[(1+q/77)¢(0,0)—0(0,0)]>
q 9 9

(52a)

(1) = (e~ 110/ H0.0)-00.0) (sl m) )btz
qy :
(52b)

These correlation functions are easily computed using the
standard techniques for averaging the exponentials of
bosonic fields."> In the most important regime |¢| <%/T, one
finds

& = &
+ i q +l q
g;(x,t)=< ; ) ( — ) . (83)
x—vptiza x+vpt+za
where
r=t %(1+1>+L 2 (54)
q_4 v o _\/Ev '

The correlators cf;(q) are determined by the properties of
Heisenberg spin chain (4). Unlike the holon correlators
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g;:(x,t), in general, cf;(q) cannot be computed using the
bosonization approach. We discuss their behavior in detail
below.

C. Static correlators c’;(q)

To find ¢7(g), one has to perform the averaging in Egs.
(51) over the eigenstates of Heisenberg Hamiltonian (4). The
results crucially depend on the relation between the tempera-
ture 7 and the exchange constant J. At T~ J, they can only
be studied numerically. Some analytical results can be found
in the cases of high and low temperatures.

1. General mathematical properties of c;(q) and c;(q)

We start by establishing interesting relations between the
functions c;(q) and c;(q), which follow from their definition
(51) and do not depend on the temperature or the specific
form (4) of the Hamiltonian of the spin chain. We first notice
that the correlators (ZM,Z& y) and (Z&YZ,’,/) are real and sat-
isfy the following relations:

<ZO,)'Z(§,7> =1,
(21,25 ) =212} ).
(Z} 21 ={Z§ 21

From definitions (51), it then follows that the correlators
cf;(q) are real and even functions of g. Also, definition (51a)
of c;(q) can be rewritten as

[’

ci(g@)=1+2Re % (2,25 e, (55)

Furthermore, one can establish a simple relation between op-
erators Z,,,/Z&y and ZSJZW Both of them add and remove a
site with spin 7 at different positions on the spin chain. If a
site is added first, the numberlng of all the subsequent sites is
shifted by 1. Thus, Z; yZO 'y_ZO i1y (Commutation of op-
erators Z, , is discussed in more detail in Appendix A.) Then,
using Eq. (51b), one obtains

T dq )
TN - ig(l-1)
<ZZ,7ZO,';/> = f_ﬂ- quCy(q)e q .

Substituting this relation into Eq. (55), one finds

_ " dq o,
c(q)=1+c (g)cos g + f_w gmcy(q ). (56)
sin ———

Similarly, one can express ¢(g) in terms of ¢}(g),

o d ! _ !
c:/(q) = c;(q)cos q+ f % cot q-49 sin g c+(q ).
g 2T

(57)

The integrals over ¢’ in Egs. (56) and (57) should be under-
stood as the principal value.
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Relations (56) and (57) simplify considerably at g=0 and
g=r. In these cases, we find

30) = c(0) =1 +(Z{ Z ). (58a)

cm+c(m)=1- v/ oy (58Db)

The operator Z /20,y destroys and then recreates a site with
a given spin 7. Thus the average <Zo yZO ,) is the probability
to find spin vy at site /=0. In the absence of magnetic field,
one expects (Z§ oy =1, resulting in

c(0) = ¢(0) = %, (59a)

1

c(m)+c(m) = 7 (59b)

Relations (56) and (57) follow from the definition of the
correlators cf;(q) and are not sensitive to the specific Hamil-
tonian (4) of the spin chain. The only property of Hamil-
tonian (4) important for relations (58) is the spin symmetry.
At the same level of universality, one can find the full de-
pendences c¢3(q) in the high-temperature limit.

2. High temperature T> ]

At high temperatures, correlators similar to ¢’ (q) have
been studied by Penc and Serhan.** They notlced that at
JIT—0, the spins are completely uncorrelated, and the cor-
relator (Z,!ng’y) is simply the probability of finding |/| ran-
dom spins at sites 0,1,.../—-1 (or [,[+1,...,—1 for negative
[) in a given state 7. Thus (z, «,Zo )= 1/ 2“‘ and, similarly,
z Ly y=1/2*1. Substituting these expressions into Eq.
(51), one finds

cq)=2c(q) = T>J. (60)

5-4cosq’
One can check explicitly that these results are consistent with
relations (56) and (57).

3. Zero temperature

At zero temperature, the correlators ¢7(g) and ¢ (g) carry
nontrivial information about the spin correlations in the
ground state of the antiferromagnetic Heisenberg spin chain
(4). Although model (4) is exactly solvable, no exact results
are known for the correlators cf;(q). The quantity analogous
to ¢ (g) was first studied by Sorella and Parola*! who used
the results of numerical diagonalization of spin chains of up
to 22 sites.*? Their results indicated that c;(q) is extremely
small at 0<g<m/2, whereas c (g)~ 1. They interpreted
this behavior as the effect of “spinon pseudo-Fermi-surface,”
which can be rephrased as follows.

Let us consider the ground state of fermionized version
(20) of the Heisenberg model. Ignoring interactions (20c)
between the fermions, one can picture the ground state as
shown in Fig. 2(a). The function CT(Q) is defined in terms of
the correlators (Z0 12, 1). By removing a spin-1 site, the op-
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erator Z; ; destroys a fermion. Ignoring for the moment other
aspects of Z;;, one concludes that c¥(q) should vanish at
—m/2<q</2, as the fermion states with those values of
the wave vector are empty [see Fig. 2(a)]. A similar argument
for the correlator c}r(q) shows that it should vanish in the
region of g space below the Fermi surface. Noticing that in
the absence of magnetic field specific spin direction is unim-
portant, one concludes that

T 3
c@)=0 at - <g<-—,

5 5 (61a)

a a
(=0 at ——<g<-—. 61b
c(q) at - <g<y (61b)

Conditions (61a) and (61b) refer to the values of ¢ between
—m/2 and 37/2; outside of that region, they can be inferred
using the 277 periodicity of the functions ¢7(q).

The above picture neglects two important aspects of the
problem: (i) the fermions interact with each other, Eq. (20c),
and (ii) the operator Z; ; not only destroys a fermion but also
removes a site from the spin chain. There is no a priori
reason to expect that the effects of these approximations
should be small. However, the bosonization approach to cal-
culation of ¢j(g) near the Fermi points g==m/2 (outlined
below) shows that although each effect is significant, they
mostly compensate each other. Numerically, this compensa-
tion results*"*! in ¢7(¢) <0.01 for |g| < /2. Based on their
numerical results, Sorella and Parola*! conjectured that in an
infinitely long spin chain, ¢ (¢)=0 at |g|<r/2. From this
point of view, the numerically small values of c;,(q) in this
interval should be viewed as a finite-size effect.

A more detailed study of the static correlators of spin
chain (4) was performed by Penc et al.?! They studied both
correlators c;(q) and c;(q) (in slightly different notations)
and found that not only ¢ (g) is numerically small at 0<g
< /2 but also ¢(q) is small at 7/2 <g <. Although these
observations are consistent with the single-particle Fermi
surface prediction [Egs. (61a) and (61b)], no significant size
effect was observed. Penc et al.>' concluded that contrary to
Eqgs. (61a) and (61b), correlators c;(q) and c;(q) do not van-
ish exactly in the “forbidden” regions of the wave vector q.

We now show analytically that although conditions (61a)
and (61b) may be a good approximation of actual behavior
of correlators ci;(q), they contradict to the spin-rotation sym-
metry of the problem. We showed in Sec. IV C 1 that the
correlators c;(q) and c;(q) are related to each other, and if
one of them is known on the interval of ¢ of length 27, the
other can be obtained using relations (56) and (57). Condi-
tions (61a) and (61b) define c;(q) over half the period 27
and ¢ (q) over the other half. This is sufficient to uniquely
define both functions at the remaining regions of ¢ space. To
accomplish that, one can solve integral equation (57) with
conditions (61a) and (61b). This mathematical problem be-
longs to the class of singular integral equations and can be
solved by applying the well-known techniques*? (see Appen-
dix C). The solution has the form
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FIG. 3. (Color online) The solution of integral equation (56)
with conditions (61a) and (61b). The solid and dashed lines show
the behavior of c;(q) and c;(q) described by Egs. (62a) and (62b),
respectively. Squares and circles represent the results of numerical
solution (Refs. 21 and 44) for the 26-site chain [Eq. (4)].

!

1 /2 _
c;(q) = /—CO eXp(— —f In|sin -4 dq’)
Vcos g TJ w2
(62a)
for —m/2<g<w/2 and
1 /2 o
clqg)=—— exp(— —f In sin dq’)
7 leos ¢ L

(62b)

for m/2<g<<3w/2. The normalization constant c, is found
using Eq. (58),

1

2G
2 cosh —
ar

Co= N (63)

where G=0.91597 is Catalan’s constant. Solution (62a),
(62b) is plotted in Fig. 3.

As expected, our solution gives an excellent approxima-
tion to the numerical data of Ref. 21. Nevertheless, the re-
sults in Egs. (61a), (61b), (62a), and (62b) are not exact.
Indeed, from Egs. (62a) and (62b), we find

~ 1.525, (64a)

+ - -
CY(O) - 1+ e—4G/7T

~ 0.475. (64b)

c\m)=—FF7—
)’( ) e4G/7T+1

Taking into consideration that C;(W)=C;(O)=O, Eq. (61a) and
(61b), we find that spin-symmetry conditions (59) are not
satisfied exactly.
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To gain better insight into the properties of the correlators
¢3(q), let us consider the case when the wave vector ap-
proaches the Fermi point, ¢— /2. In this regime, one can
apply the bosonization approach of Sec. III B. Using expres-
sions (41) for the operators Z;, and applying standard
techniques'’ for averaging the exponentials of bosonic field
over the ground state of Hamiltonian (28a), we find

a 172 a 172
7 il — ei(ﬂ'/Z)l( ) + e—i(w/Z)/( )
iy @+ il a—il

~2 (K+1/4K-1)/4
x (L> (65)
&+ 12 '

In the limit of low energies, the Luttinger-liquid constant
K —1/2. Using this value, one can find the correlator ¢*(g)
near the Fermi point g=1/2 by substituting the component
of the Green’s function (65) given by the first term in the
brackets into Eq. (51a) and replacing the sum over [ with an

integral:
Ja) \z+

a
a+il

172 .
) e i), (66)

It is important to note that the integrand is analytic in the
lower complex half-plane. Thus, ¢}(¢)=0 for ¢> /2. This
conclusion agrees with the prediction of the spinon Fermi
surface approximation (61). At ¢<<r/2, the integration in
Eq. (66) is straightforward, and we find

{3

+ _—
@) =x —
P

(67a)

where O(x) is the unit step function, and the value of the
numerical coefficient y~ 1 cannot be determined within the
bosonization approach. A similar calculation for c;,(q) results

mn
aw
®(q_ 2)

cq)=x—F—,
m
175

(67b)

also in agreement with prediction (61) of the spinon Fermi
surface picture.

Inverse-square-root singularities (67a) and (67b) of the
correlators ci;(q) at the Fermi point are consistent with the
numerical data of Ref. 21 and our expressions (62a) and
(62b) (see also Fig. 3). In particular, the asymptotes of ex-
pressions (62a) and (62b) at g= /2 are given by Eq. (67a)
and (67b) with xy=0.85.

It is important to note that results (67a) and (67b) of the
bosonization treatment of the static correlators cf;(q) do not
prove the validity of the spinon Fermi surface picture. In-
deed, bosonized expressions (41) for operators Z; ,, are only
applicable asymptotically near the Fermi point, g— /2.
Consequently, the presence of the step function ® in results
(67a) and (67b) should be interpreted as
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SR

lim = lim =0. (68)
6—+0 [ T 6—+0 _[ T
(5o "elzed)

072

Let us now show that the correlator c;(q) not only does not
vanish at ¢> /2 but, in fact, diverges at g— 7/2+0.

We start by noticing that the conclusion ¢}(¢)=0 at ¢
>7/2 holds only for K=1/2. Indeed, at C+# 1/2, the last
factor in expression (65) is no longer unity. More impor-
tantly, it is no longer analytic in the lower complex half-
plane, leading to the nonvanishing value of integral (66) at
q> /2.

The low-energy properties of Heisenberg spin chain (4)
are adequately described by sine-Gordon Hamiltonian (28a).
The parameters C and g renormalize at low energies or,
equivalently, long length scales L as

1y
K=—+=, 69
2+4 (69)
g=my, (70)
1
=—. 71
Y=L (71)

Thus, at low energies, KC deviates slightly from 1/2. This
deviation gives a correction to the correlator (66) which can
be obtained by expansion of Eq. (65) in powers of y=4(KC
-1/2),

172 ~2 2
) n 2L pitamngy
o

2 0 ~
y (04
Sct(g) = - (—
A =-3; \a+il

(72)

At g<r/2, the correction (72) is small compared to leading
term (67a) and can be ignored. However, unlike Eq. (67a),
correction (72) does not vanish at ¢ > /2,

™ X
xig) = v A=, (73)
)
where y is the same numerical coefficient as in Eq. (67a) and
(67b).

The deviation of the Luttinger-liquid parameter /C from
the limiting value of 1/2 is not the only source of corrections
to ¢}(g). Additional corrections originate from the small
sine-Gordon term (28b). One can account for this term to
second-order perturbation theory using the standard
techniques.'> The resulting correction is factor of 2 greater
than Eq. (73). [Apart from direct calculation, this can be
shown to follow from the spin-rotation symmetry of the
problem (see Appendix D).] We therefore conclude that at ¢
slightly above the Fermi point /2, the correlator c; is given
by

155440-11



MATVEEV, FURUSAKI, AND GLAZMAN

3 X
+ _ -T2 A
c'y(q) 32y 77’
)

q_>§+o. (74)

The above calculation was performed to second-order per-
turbation theory in coupling constant y and did not account
for its scaling (71). Since the scaling is logarithmic, and thus
slow compared to the leading power-law behavior in Eq.
(74), one can simply substitute expression (71) into Eq. (74),
choosing the proper value of the length scale L~1/(g
—/2). We therefore conclude that near the Fermi point ¢
=1/2, the correlator c;(q) behaves as

q%

, T
32 T T q— —+0.
”( ‘N 2
\ n-\ g 5 q > 2

ﬁ‘x
|
’Q -

|

|

(]

cig) =S

(75a)
Analogous calculation for the correlator ¢, gives
(
X
) m O
— — — 4+
q-7 q 5
O
A=) 34 1 X
il , -
3212(1_7 )\/77 q—>5—0
2 N1
\
(75b)

Our results (75a) and (75b) reaffirm our earlier observa-
tion that the correlators ci;(q) do not vanish exactly on one
side of the Fermi point, as expected from the spinon Fermi
surface picture, cf. Eq. (61a) and (61b). Instead, the correla-
tors diverge at g— /2, albeit slower than on the “main”
side of the Fermi point. The numerical data of Ref. 21 shown
in Fig. 3 indicate that the small values of cf/(q) at g> /2 do
increase near the Fermi point. However, studies of much
longer systems are needed to verify asymptotes (75a) and
(75b).

V. SPECTRAL FUNCTIONS

The spectral functions A;(k,w) and A;(k,w) of a one-
dimensional electron system are defined as Fourier trans-
forms

” Tdro
+ — " —ikxtiwt ~*
A% (k) = L dx L Gk (76)

of the Green’s functions (43). The components A;(k,w) and
A’(k,w) characterize the particle and hole parts of the exci-
tation spectrum, respectively. In this section, we study the
behavior of the spectral functions at frequencies w in the
range
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JT<hw<D,. (77)

Under these restrictions, one can express the Green’s func-
tions in forms (50), (51), and (53). Performing the integra-
tion with respect to x and ¢, one finds

2vpk2 T (T,

LIS’
A~ (k w) = f
U
c3(q)

X = e (78)
[q- i +q,] % lqi+q,—q]'™

@(i ) (akl/2m)5% 4!

where

Wit

T
k=KD, qo=—"7.
vk

(79)
K

9k =

According to Eq. (78), at small frequencies w<vpk§f-, the
spinon wave vector ¢ must be close to g;. This can be un-
derstood in terms of the energy and momentum conservation
laws. Since the energy w is small, the holon component of
the electron must have momentum near k. If the electron
momentum k is near one of those values, the spinons carry
no momentum, i.e., g=0 (or 27), in agreement with g= g,
~(). On the other hand, if k is not near +kF, the difference of
the momenta k- kF—nqk is transferred into the spin sub-
system. (Note that the electron density n= k /)

A. Zero momentum peak

To find the momentum dependence of spectral functions
(78) at low frequencies, one can replace ¢ — ¢, in ¢(q) and
é’;. The remaining integration is straightforward and gives

. O(xw)ci(qr) ( )1‘“")
w Ty IR
k= v} ®
where
K(k\> 1
(=0 +¢, W=\ e (81)

In the low-frequency limit %|w|/D,— 0, the spectral function
AJ; has a sharp Gaussian peak as a function of the electron
momentum centered at k=0. In the spin-incoherent limit
J/T—0, a similar Gaussian peak in the momentum depen-
dence of the spectral function was found by Fiete et al.>” Our
expression (80) is valid at arbitrary J/ T, with the temperature
dependence entering Eq. (80) via the functions ¢ (q) In par-
ticular, using the numerical results?! for ¢* (q) we can access
the zero-temperature limit.

Peak (80) gives the leading contribution to the density of
states at low energies,
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A = dk
v(e) = B ﬁAy(k,s/h)
_@(is) o () (D )1‘1/2K 1
~ wh 8K [ 1 ’
UP 1"(_) |8| 11’122
2K o

(82)

This result reproduces the expressions for the tunneling den-
sity of states at £/D,— 0 reported in Ref. 32.

It is important to note that the Gaussian peak in spectral
function (80) cannot be obtained within the standard
Luttinger-liquid theory of spectral functions,***” which ap-
plies only near k= k. Peak (80) is due to the holon states
with wave vectors near kﬁé:ZkF and the spin excitations with
g near 1, well below the spinon Fermi surface (see Fig. 2).

An interesting consequence of the fact that the Gaussian
peak is dominated by spin excitations away from the Fermi
points is the dramatic difference of the peak heights for the
spectral functions A* and A7, Indeed, as we discussed in Sec.
IV C, at zero temperature, C;(W)<C;(7T), whereas at 7> J,
one has C;= 2c,. Thus, the heights of the peaks at k=0
strongly depend on temperature, and the peak in A7 is much
more pronounced than that in A* at T<<J.

In our derivation of expression (80) for the spectral func-
tions, we replaced ¢ — g, in the arguments of the spin corr-
elators ¢3(g) in Eq. (78). This procedure is well justified if g,
is not too close to points 7m(2s—1)/2 (with s=0,+1,%2,...),
where at zero temperature the correlators cf;(q) have sharp
inverse-square-root singularities (see Fig. 3). In addition, one
can still use Eq. (80) if the singularities of c);(q) are smeared
by finite temperature by g ~T/J> q,. However, at very low
temperatures,

T= ﬁD—“’J, (83)
p
the approximation leading to Eq. (80) fails near g,=m(2s
—1)/2. Thus, at low temperatures, the spectral functions have
nontrivial behavior in the vicinity of k=(2s+ 1)kz. Below, we
consider the zero-temperature behavior of the spectral func-
tions near these points.

B. Fermi surface features

When the electron wave vector approaches the Fermi
point kg, we have g;— —/2. From Eq. (67a) and the sym-
metry c3(g)=c}(~g), we conclude that near g=-m/2, one

can approximate ¢}(g) as
n
Ol -+
(2 q)

) = x— it (s4)
K
N2 ™4

To explore the fine structure of the Fermi surface features at
zero temperature, instead of the approximate expression (80),
one should use the more general formula (78). Then, instead
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of one singularity at ¢,=—/2, one finds two singularities at
qr=—m/2%q,. Given definitions (79), one concludes that the
spectral function A; has singularities at two points k
=kptw/v,, above and below kp.

In evaluating the singular terms in spectral function (78),
one can approximate the exponents (j by their values at ¢
=—/2. Using expressions (54), we then find {_,=¢" ,
-1/2=¢,, where

_(2-K° (1-K)°

16K 8K,

%o (85)
The stronger of the two singularities is the one above k&,
at k=kp+w/v,. It appears when inverse-square-root singular-
ity (84) in c;(q) is near the lower limit of integral (78). The
most singular term in the spectral function A; can then be
found by extending the upper limit to infinity, resulting in

A hw) = X(a/va)Z{O_mB T
W)= G+ Il V2o,
74+ 3 (Zo) UpKF

X[2w|w—v (k- kg)[]0712, (86)

where the constant B is defined in terms of the beta function,

B= B(]%_go’%)’ o-v,(k=kp) — +0 -
B(E_g()’go)’ w_vp(k_kF)*)—O.

Power-law singularity (86) of the spectral function A; at k
=kp+w/v, with the exponent {,—1/2 is consistent with the
results of the Luttinger-liquid theory.*647

It is worth noting that at

K=2K,>6-4\2 = 0343, (88)

spectral function (86) diverges at k=ky+w/v . Nevertheless,
the dominant contribution to density of states (82) at low
energies is given by Gaussian peak (80) at k=0.

The second singularity of the spectral function A; is be-
low kg, at k=kp—w/v,. It emerges when singularity (84) of
c;(q) is at the upper limit of integral (78). As k approaches
kp—w/v, from above, the width of the integration region
shrinks to zero, and at k<kp—w/v,, the integral vanishes.
The singularity at k— kp—w/v, has the form

Ok - (kp — w/v,)) x&o(al2v,) >0
27T[F(§o + %)]Z\J"vakp
X (2w)% [+ v,k - kg)]%. (89)

A;(k, w) =

Unlike feature (86) above kp, this term always vanishes at
the singularity because {,>0. The power-law feature in the
spectral function with the exponent (, was obtained
earlier*>*’ in the framework of the Luttinger-liquid theory.
The fact that power-law feature (89) appears only on one
side of the point k=k;—w/v,, is a consequence of the “spinon
Fermi surface” approximation. In a more careful treatment,
the correlator c;(q) does not vanish at g <<—/2, but instead
has an inverse-square-root singularity with an additional fac-
tor 1/In*(g+m/2) [cf. Eq. (75a)]. Thus, cusp (89) should
appear on both sides of the point k=kyp— /v, albeit with an
additional logarithmic suppression factor at k <ky—w/v,. In
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the Luttinger-liquid theory, this feature would be caused by
the marginally irrelevant perturbation cos(2v2¢,) that was
not accounted for in Refs. 46 and 47.

At @<<0, the spectral function A7 has similar power-law
singularities at k=kp+w/v,. The respective expressions can
be obtained by replacing w— —w and k—kp— kp—k in Egs.
(86) and (89).

C. Shadow band features

The singularities in the spectral functions emerge when
excitations in both charge and spin subsystems are near the
Fermi points k- and (25— 1) /2, respectively. In particular, if
the holon momentum is k%:=2k; and the spinon momentum
ng=2kg/ 7)(w/2)=kp, the electron momentum is 3kg. For-
mally, the features in the spectral functions are caused by
singularities (67a) and (67b) appearing inside the narrow in-
tegration region in Eq. (78).

Similar to the singularities near ky, one expects to find
two features, at k=3k,tw/ Uy when either of the limits of
integration crosses the point g= /2. Since the features in the
spectral functions near 3k are weaker than the ones near &,
we discuss only the stronger of the two singularities in A;. It
appears when the lower limit g;—gq,, is near /2 and corre-
sponds to k=3kp+w/v,.

The behavior of the spectral function is controlled by ex-
ponents (54) at g= /2, which can be expressed in terms of a
single parameter

_(3k-2)* (3K,-1)

16K 8K,

1 (90)

as §;=g§;—3/2=§1. Then, the singular term in the spectral
function takes the form
OBkp+ wlv, — k) x(al2v )1+
24, + 5) DG N20 kp
X Q2w) ™ w—v,(k-3kp) 1972 (91)

A;(k, w) =

Similar to singularity (89), one will find a weaker feature on
the other side of the singularity, i.e., at k— (3kz+w/v,)+0,
if instead of Eq. (67a) a more accurate approximation [Eq.
(75a)] for the correlator c;(q) is applied.

The features in the spectral functions at k=3kp+w/v,
have been observed in numerical data for the infinite-U Hub-
bard model by Penc et al.,>> who identified it with the so-
called shadow band.*® Our formula (91) provides analytic
expression for the spectral function at the shadow band po-
sition in the limit of low frequencies w<D,/#i. Unlike the
numerical treatment of Ref. 22, our result is not limited to
the Hubbard model with only on-site repulsion and can be
applied to systems with any interaction range.

In addition to the shadow band feature near k=3ky, the
periodicity of the correlators cf;(q) results in singularities of
the spectral functions at all odd multiples of k. Similar to
the features near kr and 3k, one finds a pair of singularities
at k=(2s+1)kpxw/v, for s=2,3,.... The stronger singular-
ity in each pair is the one at k=(2s+1)kp+w/v,, where one
finds
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Ak, ) o« 5" o —v [k— (25 + Dk, (92)

with

_[@s+ DK - 2] _[@s+ DK, - 1

* 16K 8K,

(93)

At s=0,1, this expression is consistent with our earlier re-
sults (86) and (91). For a given s, the strongest (inverse-
square-root) divergence of the spectral functions at k=(2s
+1kp+w/v, is achieved when (=0, ie., K,=1/(25+1).
Since in the case of strong repulsion K,<1/2, this condition
cannot be satisfied for s=0; the lowest possible value of ¢ is
1/16.

VI. SUMMARY AND DISCUSSION OF THE RESULTS

In this paper, we have developed the theory of one-
dimensional electron systems in the regime of very strong
interactions. This regime emerges when the repulsion be-
tween electrons strongly suppresses exchange of their spins,
J<Ep. Our theory is based on the Hamiltonian H=H,+H,,
with charge part (2) brought to form (9) by means of con-
ventional bosonization, while the spin contribution H,, is the
Hamiltonian of Heisenberg spin chain (4). The most impor-
tant ingredient of the theory is expression (8) for the electron
creation and annihilation operators in terms of the charge and
spin degrees of freedom.

In our technique, the charge excitations are bosonized,
and thus the applicability of the results is limited to energies
well below Ep. On the other hand, the spin excitations are
treated more carefully, so we can access the energy scales
both below and above J. At energies below J, the standard
approach based on bosonization procedure (15) and Hamil-
tonian (16) can be applied. We showed in Sec. III that at ¢
<J, our expressions (8) for the electron operators reproduce
bosonization formulas (15). The advantage of our method is
that unlike bosonization procedure (15), it can also be ap-
plied at energy scales e =J.

The main difficulty in applying our technique is the need
to find the Green’s functions of operators Z; ,, with Heisen-
berg Hamiltonian (4). The problem is simplified for the most
interesting case £>J, when the slow time dependence of the
spin degrees of freedom can be ignored. In this case, the
single-particle Green’s functions of electrons can be ex-
pressed in terms of the static spin correlators c?(q), which
were studied in Refs. 21, 23, 40, and 41. Additional useful
properties of these correlators are derived in Sec. IV C.

We have applied our technique to the calculation of the
spectral functions of strongly interacting one-dimensional
electron systems in Sec. V. Experimentally, the spectral func-
tions can, in principle, be studied by angle-resolved photo-
emission spectroscopy. However, we are not aware of such
experiments on one-dimensional conductors in the regime of
strong interactions. A more promising approach is to observe
momentum-resolved tunneling between two parallel quan-
tum wires. Such measurements have been recently reported
by Auslaender et al.**>° The regime of strong interactions
can be achieved in a quantum wire by reducing the electron
density. Unfortunately, at low densities, the effects of disor-
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der are also amplified, and the tunneling into states of given
momentum is no longer possible.® Thus, to observe the pre-
dicted features in the spectral functions one would have to
manufacture quantum wires with even less disorder than in
Refs. 49 and 50.

Our results can be compared with previous theoretical
studies of the spectral functions of one-dimensional electron
systems. In particular, Meden and Schonhammer*® and Voit*’
studied the spectral functions in the framework of the
bosonization approach. In the case of a strongly interacting
system, their results are valid only at energies below J. How-
ever, they can still be compared with our results at w>J/#
by taking the formal limit v,— 0 in the bosonization results,
as suggested by Penc et al.>' The spectral functions of Refs.
46 and 47 show singularities at k=kp+w/v,, which are not
sensitive to the spin velocity v,. As expected, the power-law
behavior of the spectral functions at those singularities is in
agreement with our results (86) and (89). Similarly, in the
v,—0 limit, the singularities at w=+v,(k—kg) of the spec-
tral functions of Refs. 46 and 47 show the same power-law
frequency dependence as Gaussian peak (80) in the tail re-
gion (at k=kp).

Since the bosonization technique accounts only for the
electrons near the Fermi points, our results for k away from
+kp cannot be compared with those of Refs. 46 and 47. In
particular, the main contribution to the tunneling density of
states at low energies is due to the peak in the spectral func-
tions centered at k=0 [Eq. (80)]. Consequently, our expres-
sion (82) for the density of states in the case of the Hubbard
model (K=1) gives a larger result v&~!2 than the Fermi-
surface contribution v &='8 by Penc et al.*' The inverse-
square-root dependence of the density of states on energy
was obtained earlier’*~2¢ in the case of T>J. Our results
show?? that the same dependence also holds for 7<.J. Physi-
cally, the enhancement of the density of states at low energy
is analogous to that in the x-ray absorption edge problem,!
with the spin excitations creating the effective core-hole po-
tential for the holons.?*>3?

A detailed comparison can be made between our results
for the spectral function and those of Penc et al.?> The latter
work studied numerically the quarter-filled Hubbard model
in the limit of infinite on-site repulsion U. To compare their
results with ours, one should assume K=1, and consequently
Lo=¢,=1/16. Our results (86) and (91) indicate that power-
law peak with exponents £, —1/2=-7/16 should appear at
k=kp+w/v, and k=3kp+w/v,. The data of Ref. 22 do show
singularities at those lines in the (k, ) plane. In addition, as
0— 0, the singularity at k=kp+w/v,, is expected to grow as

w15, whereas the one at k=3kz+w/ v, is expected to be
suppressed as w”'%. The data of Ref. 22 d0 show this quali-
tative behavior. Finally, the data of Ref. 22 clearly show a
weak feature at k=ky—w/ Uy which becomes more promi-
nent at w— 0. This feature is consistent with our result (89)
which at {,=1/16 behaves as & "' Tk— (k- w/v,)]"'®.

One should note that the numerical data of Ref. 22 do not
show a peak at k=0 that we expect based on Eq. (80). At
w— +0, the spectral function appears to be very small. This
can be understood as a result of the smallness of c+(77)
~0.044. At w——0 the spectral function®” is not small, "but
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instead of a Gaussian peak, it shows a rather flat minimum at
k=0. This can be understood by noticing that the
k-dependent prefactor ¢ (g,)/T'({(k)) in Eq. (80) has a mini-
mum at k=0. In the limit |w|/D,—0, the last factor in Eq.
(80) dominates, and we find a peak However, in a finite
system, one cannot access the values of 7|w| below the level
spacing. Substituting the parameters of the Hubbard chain
used in Ref. 22 into Eq. (80) and using approximation (62b)
for c;(q), we find

il 2'0_)](2 (94)

In A;(k, ) = const + (2.03 Ao

at k— 0. Thus, the spectral function should have a peak if
In(D,/%|w|) > 10. On the other hand, the finite level spacing
on the quarter-filled lattice of 228 sites?? limits the frequen-
cies such that ln(Dp/ﬁ|w|) =1n(228/27)=3.6. Thus, to find
the peak at k=0, significantly longer systems should be stud-
ied. In the spin-incoherent regime 7>J, a similar interplay
of the Gaussian peak in the spectral function with the mini-
mum of the prefactor was discussed in Ref. 27.
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APPENDIX A: ANTICOMMUTATION OF OPERATORS (8)

Since electrons are fermions, in one dimension, their field
operators are expected to satisfy the following anticommuta-
tion relations:

lpy(x) wy’ ()’) + w'y’ (}’) l//y(x) =0 > (A 1 a)
Y, () + YL, () Px) =0, (Alb)
UYL, () + P, () (x) = 8, 8x —y).  (Alc)

Here, we check that our form of electron operators (8) is
consistent with relations (Al).

We start by discussing the commutation relations of op-
erators Z; ,, and ZZ - By definition, these operators act on spin
chain (4) and change the number of sites as follows. Opera-
tor Z; , removes site / from the spin chain if that site has spin
v and gives zero otherwise. Conversely, the operator Z,‘
adds a new site / with spin vy to the spin chain by inserting 1t
between the sites /—1 and /.

Let us consider the effect of operator Z; ,Z; ., with [
<!'. This operator first removes spin y' from site /" and then
spin vy from site /. Alternatively, one can first remove site /
and notice that the numbering of all sites after / has shifted
by 1. Thus, to achieve the same result, at the second step one
needs to remove site /’—1. We therefore conclude that
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Zl,«/Z]/,'y’ = Zl/_l,),/ZM, <. (A2a)

Repeating these arguments with operators Z', we find

T oAt _ St i
Zl,’yzl’,y’ - Zl’+1,}”Z

!
Ly I<T,

(A2b)

T 1
ZI»VZZ’,)/’ = ZI’—l,y’Zl-')” l < l/ . (AZC)

Let us check Eq. (Alc) at x<<y. We start by writing the
first term as

)W) =W Z 2, PH) (A3)

and noticing that according to definition (7), the holon cre-
ated at point y is counted in /(y), but not in /(x). Thus, I(x)
<I(y) and one can use Eq. (A2c),

Uy, () = (0 Z)) 0 Ziw Y ).

Using definition (7) again, we find that at x <y, the operators
Z)(x),y and W(y) commute, while \I’(x)Z;L(y)_l,y,=Zl'(y)7y,‘1’(x).
Thus, we conclude that

Y, 0) =2, PO (0)Z,,
== Z,T(y),yr‘I’T(y)‘I'(x)Zz(x),y

=— L, ),

in agreement with Eq. (Alc). One can easily perform a simi-
lar check of Egs. (Ala) and (Alb) and the case of x>y.

At x=y, relations (Ala) and (Alb) for operators (8) are
trivially satisfied because W (x)W(x) =¥ (x)¥¥(x)=0. On the
other hand, relation (Alc) is less straightforward. From Egq.
(A3) at x=y, we get

PP, () = V()W ()8,

because the operator Zl,yZ;'y, first creates a site with spin

and then removes the same site with spin y. The second term
in the left-hand side of Eq. (Alc) becomes

U000 =V Y EZ),) L Zi

(A4)

(AS)

Contrary to the expectation based on Eq. (Alc), Zzy,Z,’y
F Oy

The reason for this apparent discrepancy is that our op-
erators (8) act in a restricted Hilbert space, where two elec-
trons cannot occupy the same point x, even if their spins are
opposite. This is a fundamental feature of our theory, which
reflects the fact that electrons repel each other very strongly.
In this restricted space, the operator

PP, () + 9, () ()

is not equivalent to 577" [Here, it is convenient to view x as
a discrete coordinate and replace 8(x—x)—1 in Eq. (Alc)].
Indeed, in our Hilbert space, the state at point x can be either
empty or occupied with a single electron, with possible spins
7 or |. When acting on these states, operator (A6) has the
following effect:

(A6)

|0> — 57’}” N
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1) — Syl

It is easy to check that the sum of operators (A4) and (A5)
has exactly the same effect on these three states. Thus, our
expressions (8) for the electron operators have correct anti-
commutation relations.

APPENDIX B: BOSONIZATION OF THE OPERATORS Z; ,,
IN THE CASE OF NONVANISHING MAGNETIZATION

In Sec. III B, we bosonized the operators Z;, in the
SU(2)-symmetric case, when no magnetic field is applied to
the system. In the presence of the field, the ground state of
the system has unequal densities of electrons with spins T
and |, giving rise to a finite magnetization m=2(S;). As a
result, the Fermi sea of the Jordan-Wigner fermions (Fig. 2)
expands to accommodate their increased density (afa,):(l
+m)/2 [see Eq. (19)]. The Fermi points corresponding to this
density are

qr=2(1-m). qp=7(+m). (B1)

Our bosonization procedure in Sec. III B was performed for
m=0, but the derivation can be easily generalized to the case
of m> 0 by using the proper values [Eq. (B1)] of g; » instead
of Eq. (22). The resulting bosonization expressions for the
operators Z; , are given by

ZI = ei(ﬂ'/2)(l im)leii[q:(l)+(l/2)(l Fm)9(])]

+ e—i(ﬂ'/Z)(lIm)le:i[<p(l)—(l/2)(1Im)ﬂ(l)]’ (BZ)
with the upper and lower signs corresponding to y=7 and |,
respectively.

It is instructive to substitute Eq. (B2) into our expression
(14) for the electron annihilation operators and compare the
resulting bosonization formulas with the standard expres-
sions (15). As we discussed in Sec. III C, the right-moving
electron is constructed out of a right-moving holon and a
left-moving spinon. We therefore combine the second term in
Eq. (B2) with the first term in the parentheses in Eq. (14) and
obtain

e il (1Em) 20 ke ()] i pln) [ (1 Fm)/2]9(n)}

27T

(/lRy(x) =
(B3)

This result should be compared with the standard bosoniza-
tion expression (15a).

As expected, instead of kpzk’}/ 2, we find that the Fermi
momentum is now a function of the magnetization:

1+m 1-m
kpp=——kp, kg =—kp. (B4)
2 2

In addition, by comparing Eq. (B3) and the analogous ex-
pression for the left-moving electron,
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)
LM 2Kt ¢ ] F i (n) [ (17 m)/2) 9w}
27T

lﬂL y(-x ) =

(B5)

with Eq. (15) one finds the following relations between the
bosonic fields:

B(x) = \2,(x), (B6)

oll) = L) = i) 55)
V2

3() =\26,(1/n). (B9)

These relations generalize our earlier expressions (18a),
(18b), (29a), and (29b) to the case of nonvanishing magne-
tization. It is worth noting that at m >0, the original charge
and spin boson modes are mixed. This mixing was discussed
in Ref. 52.

APPENDIX C: SOLUTION OF EQUATION (57) WITH
CONDITIONS (61a) and (61b)

In this appendix, we show that the solution of Eq. (57)
with conditions (61a) and (61b) has the form of Egs. (62a)
and (62b). We first rewrite integral equation (57) in terms of
complex variables w=e? and z=¢'". Using the fact that ¢ is
an even function of g, we find

2, 2
% W dz z7-1
+(W) —
2771 z-w Z

c(w)= c*(z). (C1)
Here, we use the notations ¢, (q) ¢*(w); the integral is taken
over the unit circle |z|=1 in Counterclockw1se direction.
According to condition (61b), function ¢(w) vanishes
when w is on the right semicircle R (defined as w=¢' with g
between —7/2 and 7/2). In addition, c*(z) vanishes on the

left semicircle [see Eq. (61a)]. Thus, for w € R, we have

w2+ 1 1

ct(w)=—
T =W

dz 72—

+(z) weR. (C2)

Here, we assume that the contour R is traversed in the coun-
terclockwise direction, from z=—i to z=i.

This equation can be solved using the theory of singular
integral equations.*? It will be convenient to introduce a new
unknown function

#(z) = +(z) (C3)

Then, integral equation (C2) takes the form
2
wr+1 1 (2)
W2_1¢(W)=;f dZ¢__, WER.
R =W

In solving this equation, we will assume that the unknown
function ¢(w) is analytic with possible exception of inte-

(C4)
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grable singularities at the ends z=+i of the contour R. Let us
introduce a new function

20

Z W

d(w)=—

C5
2mi ) g ©5)

Obviously, d(w) is analytic everywhere except the contour R
and approaches zero at infinity. At the contour, ®(w) has a
branch cut. When w approaches R from the left or right, the
function ®(w) takes the values

I #(2)
() (W)_Zm'fRde—wi&’ 6— +0. (Co)
One can easily see that for w € R, we have
DF(w) = D7(w) = p(w), (C7)
*(0) + (o )——j 2 oy

Substituting these relations into Eq. (C4), we find that the
values of ¢(w) on the two sides of the branch cut satisfy the
following linear relation:

OH(w) = w?d(w),

An analytic function that satisfies these conditions on the two
sides of the contour R, falls off to zero at infinity, and does
not diverge faster than 1/(w=i) at the ends of the contour is
unique up to an arbitrary numerical coefficient. It can be
found using the techniques discussed in Sec. 79 of Ref. 43.
The solution is

O(w) = 21 exp(ilf lnzdz), (C10)

w+ 1 TJrZ—W

weR. (C9)

where the logarithm is defined with the branch cut along the
negative real axis. It is easy to check directly that function
(C10) does satisfy the above conditions.

For w € R, by combining Egs. (C3), (C7), and (C9), one
finds c*(w)=®*(w). Then, substituting w=¢%, one finds re-
sult (62a).

Our next goal is to find ¢~(w) for w on the left unit semi-
circle L, defined by w=e'l with q between /2 and 37/2.
Using Eq. (C1) and noticing that ¢*(w)=0 on L, we find

-(w) w dz 7
cw)=-—
2miJpz—w

+(z) -wd(w) (C11)

[see Egs. (C3) and (C5)]. Then, substituting w=e, we ob-
tain result (62b) with the same normalization constant as in
Eq. (62a).

APPENDIX D: MAPPING OF THE BOSONIZED
HEISENBERG SPIN CHAIN TO THE SPIN SECTOR
OF WEAKLY INTERACTING ELECTRON SYSTEM

1. Consequences of the spin-rotation symmetry

In Sec. IV C 3, we have evaluated the first correction (73)
to the correlator ¢7(g) above the Fermi point g=/2, where
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the simple bosonization result (67a) vanishes. The correction
originated from two sources. First, we found the contribution
due to the deviation of the quadratic part of the Hamiltonian
from the fixed point, IC# 1/2, and then we included sine-
Gordon term (28b). The latter correction turned out to be
larger than the former one by a factor of 2. Here, we show
that this is a result of the spin-rotation symmetry of the prob-
lem.

To this end, we utilize the equivalence of the bosonized
Hamiltonians of Heisenberg spin chain (28) and spin part
(16b) of the Hamiltonian of weakly interacting electrons.
The exact form of the electron-electron interactions does not
affect the general form of Hamiltonian (16). In the simplest
case, one can consider only backscattering of electrons by
each other. For the electrons in the vicinity of the Fermi
level, the most general form of backscattering Hamiltonian is

8y 58 Wikt y Yrs - (D1)

with the coupling constant

1
8yy' 85 = 5g1(577r 5557 +0,, 0-56’)’ (DZ)

where o, is the vector of standard Pauli matrices and g, is
the 2k Fourier component of the interaction potential. In Eq.
(D1), the summation over repeating spin indices is implied.

The exact form (D1), (D2) of the backscattering term in
the Hamiltonian is dictated by the SU(2) symmetry of the
problem with respect to the rotation of electron spins. Ignor-
ing this symmetry for the moment, we will view Eq. (D2) as
a special case of tensor

1
4 V4 X X
g,y,y!&sr = E(glp57y’ 5557 + ngO'W,O'&S, + glxo'w,()'[s&,

81T T, (D3)
Unlike Eq. (D2), this form of coupling violates the spin-
rotation symmetry, unless g;,=g,=&,. The standard treat-
ments of weakly interacting electron systems, including the
derivation of bosonized Hamiltonian (16), start with two
constants, gy =g, and g, =g;,=g1,, and eventually equate
gy and gy,.

Interaction constants g;,, gy, and g, affect different
terms of bosonized Hamiltonian (16). Parameter g, corre-
sponds to density-density coupling and affects the Hamil-
tonian of the charge degrees of freedom via renormalization
of v, and K,,. It does not affect H,, and for our purposes can
be ignored. The coupling constant g, enters via K, =1
+g1/2, whereas the spin flip scattering accounted for by g; |
transforms to the sine-Gordon term in Eq. (16b).

Our calculation of correction (73) neglected the sine-
Gordon term. Thus, g2 in Eq. (73) is, in fact, g%z. Since c;(q)
is invariant with respect to spin rotations, identical contribu-
tions should be expected from coupling constants g;, and
g1y~ While evaluating the correction to ¢3(q) due to sine-
Gordon term (28b), we accounted for both g, and g;, and,
as expected, obtained twice the result (73).
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2. Alternative evaluation of the correlators c;(q) near the
Fermi points

The mapping of bosonized Hamiltonian (28) of the
Heisenberg spin chain and the Hamiltonian H,, Eq. (16b),
describing the dynamics of the spin sector of weakly inter-
acting electron gas, enables one to obtain an alternative ex-
pression for the correlators c):;(q) near the Fermi point. Let us
consider the Green’s function of right-moving electrons
Gg(x,1) traced over the spin indices. It is well known?® that
asymptotically at large x and ¢, it separates into a product of
charge and spin factors,

1
GR(-x’t) = :Tgp(x’t)ga'(-xJ) . (D4)

The two factors are most easily computed using bosonization
transformation (15), in which case the charge and spin fac-
tors are obtained by averaging the exponentials of bosonic
fields ¢,, 6, and ¢,, 6, in Eq. (15a), respectively. In the
absence of electron-electron interactions, the parameters of
Hamiltonian (16) take unperturbed values v,=v,=vg, K,
=K,=1, and g, , =0. Then, one finds

1
(x—vpt+idsgnt)'’?’

gV = gP(x,1) = (D5)

and Eq. (D4) reproduces the standard expression for the
Green’s function of noninteracting electrons.

In the presence of interactions, the parameters of Hamil-
tonian (16) renormalize, and the charge and spin components
of the Green’s function show nontrivial behavior. We showed
in Sec. III C that the exponentials of the bosonic fields ¢,
and 6, in Eq. (15a) are equivalent to bosonized expression
(41) for the operators Z, . Thus, the correlator <Zl’yZ8’y in
definition (51a) of c¢}(g) can be found from g,(x,7) at x
=I/n and t=0.

We will find g,(x,7) by calculating electron Green’s func-
tion (D4) and identifying its spin component. Since Hamil-
tonian (16b) of the spin sector is universal at low energies,
the specific form of the electron-electron interactions is not
important. It is most convenient to choose form (D1) with
coupling constant (D3) chosen so that g;,=0 and g,,=g;,
=g,=g;- In this case, the interactions do not affect the
charge sector, and g,(x,?) retains its unperturbed value (D5),
and

8o(x,0) = w(x —vpt + i8sgn 1) 2 Glx,1). (D6)
The electronic Green’s function can be studied using
straightforward perturbation theory in the coupling constant
81-

The first nonvanishing contribution to Gg(x,) appears in
the second order and is given by the diagram in Fig. 4. The
respective correction to the Green’s function is

5G(k,w) = 2GV(k, )3 (k, w) G (k, w), (D7)
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Ly

RS RS

Ly

FIG. 4. The second-order diagram for the perturbative calcula-
tion of the electronic Green’s function Gg(x,1).

where the factor of 2 accounts for the trace over spin vari-
ables and the self-energy

381 f dk,dkrdw,dw,
2 Qm?*

XGg))(k+k1 —kypw+ w — ).

S (k, o) = GOk, )G (kg @0r)

(D8)

Here, the factor 3g% appears as the sum g%x+ gfy+ g%z. Sub-
stituting the unperturbed Green’s functions

1

GOk, w) = , D9
L (ko) w+vpk—idsgnk (D9)
(©) 1

GOk, w) = (D9b)

w-vpk+idsgnk’

and performing integration with respect to w;, w,, and one of
the momenta, we find

S (k,w) =3, (k) + 2(k,0), (D10)
where
3 3g%k
3, (k)=- 6720, (D11)
- _3gi(w—vgk) m( ok +q)
2k @)= 1670y 0 \w—vpk—2vpg+id

0(-k+q)

- -aq g,
w—vpk+2qu—i6)e 1

(D12)

Here, we have introduced the short-distance cutoff « for the
electron-electron interactions. In principle, this cutoff may
not coincide with the bandwidth cutoff « used in the
bosonization procedure. This distinction is not important for
the present discussion.

The two second-order contributions to the electron self-
energy have very different meanings. The term 2, accounts
for a small correction to the velocity of spin excitations,

which for our purposes can be ignored. On the other hand, >
leads to the logarithmic renormalization of the electron
Green’s function, which affects the singular behavior of the
correlators cj(q) near the Fermi points. We therefore explore
this correction in more detail.

a. Logarithmic correction to the Green’s function

Let us now substitute expression (D12) for the self-energy
3 (k,) in Eq. (D7) and perform the Fourier transformation
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to x and ¢ variables. The resulting correction to the Green’s
function has the form
3g% 1 o’
P . In . 2 2
R2mvrx—vpt+idsgnt  (a+ivt])*+x
(D13)

5GR(X, t) =

This expression is consistent with the logarithmic renormal-
ization of the electron Green’s function studied earlier in the
g-ology theory [cf. Eq. (4.24) of Ref. 45]. [Our Eq. (D13) is
obtained by neglecting the constant g, and replacing 4g%
with 3g% to account for the fact that we assume g,=0.]

We can now separate the spin component g (x,7) of the
electron Green’s function Gg(x,7) following prescription
(D6) and obtain

1
(x—vpt+idsgnn)'?

golx,1) =

X(l —3—)€ln (a+ivgl)*+°

2 ) (D14)

where y,=g,/mvp. As expected, g (x,+0) reproduces the
logarithmic correction to the correlator (Z,VZS’Y) used in Eq.
(72), with the additional factor of 3 correctly included.

b. Renormalization of the Green’s function

Logarithmic correction (D14) to the Green’s function
grows at long distances and can, in principle, become large
despite the smallness of the prefactor y%. To find out whether
this is the case, one can compute the Green’s function in the
leading logarithm approximation. We accomplish this by
adopting the multiplicative renormalization procedure of
Ref. 45. We present the spin component of the Green’s func-
tion as

2,00, =d(&)g(x,1).

Here, the new function d(§) is expected to depend on x and ¢
very slowly, via their logarithm,

(D15)

1 (a+ivgt)?+x*

&(x,1) = > In 2 (D16)
In particular, our result (D14) has form (D15) with
3,2
a§=1-"1¢ (D17)

As we increase &, correction (D17) grows and may no longer
remain small. In addition, the coupling constant y, itself de-
pends on ¢ as

V1
L+y,€

yi(§) = (D18)
(see Ref. 45).

Following the general prescription® to account for the
multiplicative corrections to the Green’s function, we use Eq.
(D17) to write the renormalization group equation upon In d,
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4 @ = 2y2e).

dE Eyl (D19)

Solution of this equation with y,(§) given by Eq. (D18) has
the form
Vi€

a(® =exp(— 3—).

D20
161 +y,& (D20)

At small y¢, it reproduces perturbative expansion (D17),
while in the limit £ — o, we obtain a finite renormalization of
the Green’s function,

PHYSICAL REVIEW B 76, 155440 (2007)

golx,t) = ew(— &> ! (D21)

16 ) (x—vpt+idsgn )
In a weakly interacting electron gas, the coupling constant
y;<<1, and renormalization (D21) can be ignored. As inter-
actions become stronger, y; increases and reaches values of
order unity. Thus, one can expect that the coefficient y in
asymptotes (75a) and (75b) of the correlators cf;(q) near the
Fermi point will slowly decrease from its numerically ob-
tained value y~0.8 to a significantly lower number at g
— /2.
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