
Resistivity of Inhomogeneous Quantum Wires
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We study the effect of electron-electron interactions on the transport in an inhomogeneous quantum
wire. We show that contrary to the well-known Luttinger liquid result, nonuniform interactions contribute
substantially to the resistance of the wire. In the regime of weakly interacting electrons and moderately
low temperatures we find a linear in T resistivity induced by the interactions. We then use the bosonization
technique to generalize this result to the case of arbitrarily strong interactions.
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Since the first measurements of quantized dc conduc-
tance in quantum wires [1], transport properties of these
systems have generated a lot of interest. Theoretically, such
one-dimensional conductors cannot be described by the
conventional Fermi liquid theory but rather form a quali-
tatively different state known as the Luttinger liquid [2].
Recently several characteristic signatures of the Luttinger
liquid state have been reported experimentally in quantum
wires [3,4]. Perhaps even more interestingly, a number of
experiments show anomalies in the transport properties of
these systems in the form of a small structure below the
first plateau of quantized conductance [5–10], which are
not expected in the Luttinger liquid theory [11]. The so-
called ‘‘0.7 structure,’’ which develops at finite temperature
in low-density wires, is an example of such deviations from
perfect quantization [7–10]. While its precise origin still
remains unclear, this feature is most likely related to
interactions between electrons [12–14].

A number of recent theory papers [11,14] studied the
model of a quantum wire device in which interactions are
present only in a small region of a one-dimensional elec-
tron system between two noninteracting leads. If the size of
the interacting region does not significantly exceed the
Fermi wavelength of the electrons in the wire, the inter-
actions give rise to backscattering of either single electrons
or pairs, resulting in significant corrections to the quantized
conductance [14]. On the other hand, if the interaction
strength varies smoothly over a long distance, such back-
scattering processes are expected to be exponentially weak
and can be neglected. In this regime a model of nonuniform
Luttinger liquid with parameters gradually varying as a
function of position is appropriate. Studies of such a model
found no correction to the quantized dc conductance of the
wire [11]. It is thus natural to conclude that inhomogene-
ities of interacting quantum wires at large scales d� k�1

F
do not affect the dc transport beyond the exponentially
small backscattering corrections.

In this Letter we show that even at kFd� 1, when the
backscattering processes [14] can be ignored, the inhomo-
geneity of the interaction strength in the wire gives rise to a
finite resistivity at nonzero temperature.

We start by considering an infinite one-dimensional
system of weakly interacting spinless electrons, with qua-
dratic dispersion �p � p2=2m. In this simple model, the
electron density n is assumed to be uniform, but the
strength of the electron-electron interactions varies along
the wire. We describe these inhomogeneous interactions by
the potential

 V �x; y� � V�x� y��
�
x� y

2

�
: (1)

Here V�x� y� is the conventional electron-electron repul-
sive interaction. Coulombic in nature, it is screened by the
nearby gates, and for simplicity we will treat it as a short-
range interaction. The nonuniformity of the system is then
encoded in the dimensionless function �, which varies at a
length scale d, large compared with both the Fermi wave-
length and the range of the interaction potential V�x� y�.

In order to compute the resistance of the wire, we
enforce a dc current I to flow through the system. The
electrons in the wire then acquire a drift velocity propor-
tional to this current: vd � I=ne. In the reference frame
moving along the wire with velocity vd the electronic
subsystem is in equilibrium, as pointed out by Pustilnik
et al. [15] in the context of Coulomb drag between two
parallel wires. This equilibrium is characterized by a Fermi
energy �F and a temperature T.

When viewed in the stationary reference frame, where
the electric current does not vanish, the electrons are no
longer in thermodynamic equilibrium. In particular, their
occupation probabilities cannot, in general, be expressed as
a Fermi function of the energy. However, at T � �F the
occupation probabilities of the left- and right-moving
states near the Fermi level can still be approximated by
Fermi functions, albeit with two different temperatures, TL
and TR. To show that, we note that the electron energy �p
changes to a different value ~�p in the stationary frame.
Considering a state p near the right Fermi point pF, to first
order in p� pF, we have

 

�p � �F
~�p � ~�F

�
vF�p� pF�
~vF�~p� ~pF�

�
vF
~vF
;
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where in the stationary frame ~vF � vF � vd, ~p � p�
mvd, ~pF � pF �mvd. Thus, the occupation probability
of this state can be expressed in terms of its energy ~�p in
the stationary frame as

 

1

e��p��F�=T � 1
�

1

e�~�p�~�F�=TR � 1
;

where TR � T~vF=vF � T�1� vd=vF�. Similarly, for the
electrons near the left Fermi point �pF one finds the
occupation probability given by the Fermi function with
the effective temperature TL � T�1� vd=vF�.

One may expect that the electron-electron interactions
induce thermalization between right- and left-movers
through two-particle scattering processes like the one
shown in Fig. 1. In a uniform system, two-particle pro-
cesses cannot lead to thermalization [16] because of the
conservation of both energy and momentum: the interac-
tions either exchange the momenta of the two electrons or
leave them unchanged. However, in our model the non-
uniformity of the interaction potential (1) breaks the trans-
lational invariance of the system and allows for two-
particle scattering processes that conserve energy but not
momentum.

A typical two-particle process shown in Fig. 1 describes
the scattering from a state with momenta (p, k) to (p0, k0),
and is accompanied by an overall loss of momentum. Since
this process involves a transfer of energy from the
‘‘warmer’’ right-moving branch to the ‘‘colder’’ left-
moving one, it is expected to occur more frequently than
the inverse process �p0; k0� ! �p; k�, so that on average, the
two subsystems lose more momentum than they gain. Note
that unlike Ref. [14], the typical change of momentum for
the processes shown in Fig. 1 is small compared to the
Fermi momentum, and the rate of such processes will not
become exponentially small at kFd� 1.

The decrease in momentum can be interpreted as a result
of a damping force acting on the electrons. To maintain
constant current, it has to be balanced by a driving force,
which stems from a local electric field, generated as a
response of the system to the current bias [15]. Since the
damping force is proportional to the temperature difference
between the two subsystems, TR � TL / I, this local elec-

tric field is proportional to the applied current, and the
proportionality coefficient is defined as the resistivity.

Let us compute the resistivity at temperatures T �
@vF=d. We isolate a small segment of wire taken at posi-
tion x, with the length �x in the range @vF=T � �x� d.
The driving force eE�x�n�x acting on this segment of wire
as a result of the local electric field E�x� � ��x�I compen-
sates for the damping force �F due to the interactions, so
that the resistivity can be written as

 ��x� � �
�F
enI�x

: (2)

We compute the damping force as the change in momen-
tum per unit time, using the Fermi golden rule
 

�F �
2�
@

X
p;k;p0;k0

jVpk;p0k0 j
2���p � �k � �p0 � �k0 �

� �p0 � k0 � p� k�fRpf
L
k �1� f

R
p0 ��1� f

L
k0 �: (3)

Here Vpk;p0k0 is the matrix element of the interaction po-
tential for scattering from an initial state (p, k) to a final
state (p0, k0), as shown in Fig. 1; the occupation numbers
fR;L are given by the Fermi-Dirac distribution evaluated
with the appropriate temperatures TR;L. One can easily
check that at TR � TL expression (3) vanishes. Then in
the linear response regime, one can expand the occupation
numbers fR and fL to first order in TR � TL / I and find
that �F is proportional to the applied current.

To first order in the interaction potential, the matrix
element Vpk;p0k0 is given by

 Vpk;p0k0 �
Z x��x

x
dyei	�p

0�k0�p�k�=@
y	V�0� � V�2kF�
��y�;

(4)

where V�0� and V�2kF� are, respectively, the zero and 2kF
Fourier components of the interaction potential introduced
in Eq. (1). Substituting Eq. (4) into Eq. (3), one readily sees
that a constant value of � enforces the conservation of
momentum and leads to a vanishing result. The dominant
nonvanishing part thus involves the gradient of � and
contributes to �F as �@x��2.

Performing the remaining momentum summations, the
resistivity evaluated to second order in the interaction then
takes the form

 ��x� �
h

64e2

T
n�F

�
V�0� � V�2kF�

�@vF

�
2
�
@��x�
@x

�
2
: (5)

This result was obtained in the regime of temperatures
T � @vF=d, for which the position integrals coming
from the matrix element (4) could be easily simplified.

Our method provides a clear physical picture of the
origin of the resistivity in the simple case of weakly
interacting spinless fermions. We now turn to the case of
arbitrarily strong interactions, where we derive the expres-
sion for the resistivity using a bosonized Hamiltonian. In

FIG. 1 (color online). Electronic dispersion in the stationary
frame, with an example of non-momentum-conserving process.
The right- and left-movers’ Fermi energies read �R;LF � �F�1�
2vd=vF�.
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addition, we account for electron spins and allow for a
nonuniform density n�x�, as a result of the surrounding
gates and impurities in the substrate.

Following Ref. [11], we generalize the Tomonaga-
Luttinger model of interacting one-dimensional electron
systems to account for inhomogeneities by allowing for
position dependence of the Luttinger liquid parameters. In
the case of electrons with spins, this procedure yields

 

H � H� �H� (6a)

H� �
Z
dx

@u��x�

2�

�
K��x��@x���2 �

�@x���
2

K��x�

�
(6b)

H� �
Z
dx

@u��x�
2�

�
K��x��@x���

2 �
�@x���

2

K��x�

�

�
Z
dx

2g��x�

	2�	�x�
2
cos�2

���
2
p
���: (6c)

Here the short distance cutoff 	 is assumed to be a function
of x. In the limit of a homogeneous system, kFd! 1, the
coupling constant g� renormalizes to zero at large length
scales; at the same time, the parameter K� approaches
unity as K� � 1� g�=2�@u�, as required by the SU(2)
symmetry [2]. We assume that kFd is sufficiently large for
the system to be near this limit at every point x; i.e.,
g��x�=@u��x� � 1. Previous works on the inhomogeneous
Luttinger liquid model were either restricted to spinless
electrons [11] or discarded [17] the cosine term in Eq. (6c),
invoking the irrelevance of g� at low energies. In our case
its contribution to the resistivity is as important as that of
the quadratic part of H�. In the derivation below, we
assume that the inhomogeneities of the system are weak,
e.g. ju��x� � u��0�j � u��0�.

The resistivity can now be computed following a method
similar to the one outlined in Ref. [13] in the context of a
quantum wire in the Wigner crystal regime. As one applies
an electric current I � I0 cos!t, the electrons start moving
in the wire. In the dc limit !! 0, we can assume that all
electrons move in phase, so that at time t their position has
shifted by a distance proportional to the injected charge
q�t� � I0!�1 sin!t. As a consequence, we need to evalu-
ate all the position-dependent parameters in the Hamilton-
ian (6) at the true time-dependent position of the electrons,
which amounts to replacing x! x� q�t�=en�x�. In the
regime of linear response, we only need to expand the
Hamiltonian to first order in q�t�:

 H �
Z
dx
�
H �x� �

q�t�
en�x�

H 0�x�
�
; (7)

where H �x� is the Hamiltonian density when no current
is applied, and H 0�x� is obtained from H �x� by replac-
ing the position-dependent parameters g��x�=	�x�2,
u
�x�K
�x�, and u
�x�=K
�x� (where 
 � �, �) by their
derivatives with respect to x.

In the conventional Luttinger liquid theory, the current
I � _q is usually viewed as an excitation of the charge
mode, and q�t� thus appears as a dynamical variable pro-
portional to ��. Then the linear in q part of Eq. (7) cor-
responds to cubic terms such as ���@x���

2. These cubic
terms are usually disregarded as irrelevant perturbations to
the Luttinger liquid Hamiltonian. Nevertheless, the effect
of such perturbations should be addressed, because without
them no contribution to transport arises from a nonuniform
interaction [11]. In what follows, it will be more conve-
nient to treat q�t� as an external parameter.

The oscillatory perturbation in the Hamiltonian (7) acts
as an external driving force, which leads to the creation of
spin and charge excitations and dissipation of the energy
from the driving force to the wire. The energyW dissipated
into these excitations in unit time may be obtained using
the Fermi golden rule. In the limit of weak applied current,
it is expected to be quadratic in the amplitude I0 of the
current oscillations. This allows us, by comparison with the
Joule heat law W � I2

0R=2, to deduce the expression for
the resistance R of the wire. Then in the dc limit !! 0 we
find

 R �
i

e2
@

ZZ dxdy
n�x�n�y�

Z
dtthH 0�x; t�H 0�y; 0�i; (8)

where h. . .i corresponds to the thermodynamic average.
The last integral in Eq. (8) falls off rapidly at jx� yj �
@u�;�=T. Thus at T � @u�;�=d, we can reduce the expres-
sion (8) to a single integral in space, whose integrand we
identify with the resistivity ��x� of the wire.

As both the charge and spin modes dissipate energy
throughout the wire, the total resistivity is given by the
sum of a charge and a spin contribution, ��x� � ���x� �
���x�, which can be computed separately. Substituting the
charge Hamiltonian (6b) in Eq. (8) and performing the
remaining time integral, one can extract the charge con-
tribution to the resistivity

 ���x� �
h

8�e2

T

@u��x�	n�x�
2

�@xK��x�
K��x�

�
2
: (9)

This result holds at temperatures in the range @u�=d�
T � D�, where the charge bandwidth D� � @nu�.

One can use the expression (9) to recover our earlier
result (5) for weakly interacting spinless electrons. In this
case, upon bosonization the Hamiltonian of the system
takes a form equivalent to H�, with u��x� ! vF and
K��x� ! 1� 	V�0� � V�2kF�
��x�=2�@vF. Substituting
these expressions into Eq. (9) and expanding to second
order in the interaction, one reproduces the result (5).

The spin contribution to the resistivity consists of two
terms arising from substituting the quadratic part and the
cosine part of the spin Hamiltonian in Eq. (8). The con-
tribution of the quadratic part of H� can be obtained
from Eq. (9) by replacing the charge parameters with their
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spin counterparts. This result is further simplified by using
the low-energy expansion K��x� � 1� y��x�=2, where
we introduced the dimensionless parameter y��x� �
g��x�=�@u��x�.

In the case of weakly interacting electrons, the correc-
tion to the parameter K� in the quadratic part of Eq. (6c)
accounts for the g1 coupling of the z components of the
electron spins, while the cosine term in H� is associated
with the remaining x and y components [2]. Then from the
spin symmetry of the system, the cosine term of the spin
Hamiltonian should contribute twice as much to the resis-
tivity as the quadratic part. We expect this result to hold for
arbitrarily strong interactions; in the case of weakly inter-
acting electrons, this conclusion can easily be verified [18].
Combining these two terms, the spin contribution to the
resistivity reads

 ���x� �
3h

32�e2

T

@u��x�	n�x�
2
	@xy��x�
2: (10)

Again, we restricted ourselves to the range of moderately
low temperatures, @u�=d� T � D�, where the spin
bandwidth is given by D� � @nu�.

The comparison of the two contributions (9) and (10) to
the resistivity of the wire suggests the strongest effect in
the regime of low electron density when the electron
correlations are strong. In this case the exchange coupling
J of electron spins, which sets the spin bandwidth D�, is
strongly suppressed, so that D� � D�. As a result, we
expect the spin part (10) of the resistivity to be the domi-
nant contribution in this regime, due to the reduced spin
velocity.

Our results are relevant to experiments on wires longer
than the length leq associated with the processes of equili-
bration in the moving frame. In shorter wires, with length
L� leq, we expect the resistivity to be suppressed by an
additional factor of order L=leq. This raises a fundamental
question of the equilibration in a one-dimensional system
of interacting electrons. In the weakly interacting case, it is
believed that the leading equilibration mechanism is due to
three-particle collisions [16] involving states near the bot-
tom of the electronic band. One expects such processes to
be strongly suppressed at low temperatures, corresponding
to a large leq. However, such a treatment is not applicable
beyond the limit of weak interactions. While we expect
stronger interactions to make thermalization easier, a de-
tailed investigation of the equilibration processes will be
necessary to access the full temperature dependence of the
resistivity in this regime.

In summary, we have shown that the interactions be-
tween electrons in a long inhomogeneous quantum wire
give rise to a finite resistivity � � �� � ��, given by
Eqs. (9) and (10). This resistivity is due to the weak vio-
lation of the momentum conservation in electron-electron
collisions, caused by the inhomogeneities on long spatial
scales d� k�1

F . Our results can be tested experimentally
by measuring the temperature and density dependences of
the resistance of long quantum wires.
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