
Conductance of Fully Equilibrated QuantumWires
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We study the conductance of a quantum wire in the presence of weak electron-electron scattering. In a

sufficiently long wire the scattering leads to full equilibration of the electron distribution function in the

frame moving with the electric current. At nonzero temperature this equilibrium distribution differs from

the one supplied by the leads. As a result the contact resistance increases, and the quantized conductance

of the wire acquires a quadratic in temperature correction. The magnitude of the correction is found by

analysis of the conservation laws of the system and does not depend on the details of the interaction

mechanism responsible for equilibration.
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Experimental studies on the dc transport of short quan-
tum wires have shown the quantization of their conduc-
tance in units of 2e2=h [1]. This phenomenon is well
understood within a model of noninteracting electrons
[2], even though the interactions in the wire are usually
not weak, i.e., e2=@vF * 1, where vF is the Fermi velocity
in the wire. The absence of any effect of electron inter-
actions on the conductance is usually attributed to the fact
that the quantum wires are always connected to two-
dimensional leads, where interactions between electrons
do not play a significant role. Indeed, it has been shown
that within the so-called Luttinger-liquid theory, the inter-
actions inside the wire do not affect conductance [3–5].

A number of recent experiments revealed deviations
from perfect quantization in low-density wires [6–15].
These deviations often take the form of a shoulderlike
feature, which develops at finite temperature just below
the first quantized plateau, around 0:7ð2e2=hÞ. At the mo-
ment, there is no consensus on the theoretical interpretation
of this so-called ‘‘0.7 structure.’’ It is generally accepted,
however, that electron-electron interactions are involved in
this feature, thus generating a lot of interest in understand-
ing the effect of interactions on the transport properties of
one-dimensional conductors. Here we study one of the
most fundamental aspects of interactions, when they are
so weak that their only effect is to equilibrate inside the
wire the electrons coming from the two leads.

In the absence of interactions, the electrons propagate
through the wire ballistically. Therefore the distribution
functions of the right- and left-moving electrons are con-
trolled by the left and right leads, respectively,

fp ¼ �ðpÞ
eð�p��lÞ=T þ 1

þ �ð�pÞ
eð�p��rÞ=T þ 1

: (1)

Here �p is the energy of an electron with momentum p,

�ðpÞ is the unit step function, and we assume that the left
and right leads have the same temperature T, but different

chemical potentials �l ¼ �þ eV and �r ¼ �. It is im-
portant to note that even weak processes of electron-
electron scattering will modify the distribution (1).
Indeed, such processes will force some left-moving elec-
trons to change their direction of motion and become right-
movers. Thus the basic assumption of Eq. (1), that all the
right-movers originate from the left lead and are in equi-
libium with it, will be violated.
The exact shape of the true steady state distribution of

electrons can be understood easily if the wire is very long
and the electron system is Galilean invariant, �p ¼ p2=2m.

In this case it is convenient to view the electron system in
the reference frame moving with the drift velocity vd ¼
I=ne, where I is the electric current in the system and n is
the electron density. In this frame the electron system is at
rest, and must be described by the equilibrium Fermi-Dirac
distribution characterized by a single chemical potential. In
the stationary reference frame this distribution takes the
form

fp ¼ 1

expð�p�vdp��eq

Teq
Þ þ 1

; (2)

where �eq and Teq approach � and T at V ! 0. The

distribution functions (1) and (2) coincide only in the limit
of zero temperature. (In this case, to linear order in the drift
velocity, �l;r ¼ �eq � vdpF, where pF is the Fermi mo-

mentum.) At nonzero temperature, one can expect the full
equilibration of the electron system in the wire to signifi-
cantly affect its transport properties.
Recently, the equilibration of the electrons in the moving

frame was shown to have a strong effect on the Coulomb
drag between two parallel quantum wires [16] and to give
rise to a finite resistivity of long inhomogeneous wires
[17]. On the other hand, because the equilibration pro-
cesses that relax the distribution (1) to the form (2) involve
converting right-moving electrons into left-moving ones, it

PRL 102, 116402 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

20 MARCH 2009

0031-9007=09=102(11)=116402(4) 116402-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.102.116402


is natural to expect that the interactions will affect con-
ductance of the wires even in the absence of inhomogene-
ities, Fig. 1. Such an effect was recently discussed by
Lunde, Flensberg, and Glazman [18] in the case of short
wires, where the effect of the equilibration processes is
weak, and the distribution function is still close to the
unperturbed form (1). They found a negative correction
to the quantized conductance of the wire, which grows
linearly with its length L.

In this Letter we explore the opposite limit of a long
wire, L ! 1, in which the electron distribution function in
the wire does assume the limiting form (2), and the cor-
rection to the conductance saturates at a value independent
of L. The crossover between this regime and that of short
wires will be discussed elsewhere [19].

Throughout this Letter we assume that the interactions
between electrons are very weak, and their only effect is to
provide a mechanism of relaxation of the distribution
function to the form (2). The exact nature of the scattering
processes is unimportant, as long as these processes con-
serve the number of electrons, the energy of the system,
and its momentum. Below we obtain the conductance of
the wire by detailed analysis of these conservation laws.

The conservation of the number of particles means that
in the steady state regime the total particle current jðxÞ is
constant along the wire. It is convenient to present the total
current as the sum j ¼ jR þ jL of currents of the right- and
left-moving electrons,

jR;LðxÞ ¼ 2
Z 1

�1
dp

h
�ð�pÞvpfpðxÞ; (3)

where the factor of 2 accounts for the spins, vp ¼ p=m is

the electron velocity, the positive sign in the step function
corresponds to jR, while the negative one to jL.

It is important to realize that the distribution function fp
in Eq. (3) depends on the position in the wire. Inside a long
wire, the relaxation processes ensure that fp has the uni-

versal form (2), but near the ends of the wire fp is affected

by the leads. For example, at the left lead the distribution of

the right-moving electrons is controlled by the lead and
takes the form of the first term in Eq. (1). This enables one
to easily evaluate the current jRðlÞ of the right-movers at
the left lead.
Unlike the total current j, the current jRðxÞ is not uni-

form along the wire, as the equilibration processes allow
electrons to change direction. The rate _NR of the change of
the number of right-movers due to the electron-electron
collisions is given by the difference of the values of jR at
the two ends of the wire, _NR ¼ jRðrÞ � jRðlÞ.
Although the current jRðrÞ of the outgoing right-movers

is not known, it can be expressed in terms of the total
current j and the current jLðrÞ of incoming left-movers,
jRðrÞ ¼ j� jLðrÞ. It follows then that the change in the
number of right-movers per unit time _NR now depends on
the electric current I ¼ ej flowing through the wire, as
well as the sum of incoming particle currents from both
leads

jRðlÞ þ jLðrÞ ¼ I

e
� _NR: (4)

In analogy with jRðlÞ, the current jLðrÞ is controlled by the
right lead and can be found by using the distribution
function fp given by the second term in Eq. (1). Since

both terms in the left-hand side of Eq. (4) are determined
by the distribution functions in the noninteracting leads,
the result of the routine evaluation of the two currents is
given by the Landauer formula jRðlÞ þ jLðrÞ ¼ 2eV=h, up
to corrections exponentially small in �=T. Thus we find
the following relation between the applied bias, electric
current, and _NR,

2e2

h
V ¼ I � e _NR: (5)

An equivalent relation was obtained earlier in Ref. [18]
using the Boltzmann equation formalism. It formally ex-
presses the idea that the processes changing the number of
right-movers in the wire will result in a correction to the
quantized conductance.
The conservation of energy in electron-electron colli-

sions implies that the total energy current jEðxÞ is uniform
along the wire. It is instructive to express the energy
current as the sum jE ¼ jRE þ jLE of the contributions of
the right- and left-moving particles,

jR;LE ðxÞ ¼ 2
Z 1

�1
dp

h
�ð�pÞvp�pfpðxÞ: (6)

In the same fashion that we could relate the particle current
j to how the number of right-moving electrons change over
time, one can find a relation between the energy current jE
flowing through the wire and the rate of change _ER of the
energy of right-movers due to the electron collisions.
Indeed, the reasoning that led to Eq. (4) can be readily
extended to the case of energy currents rather than particle
ones, leading to

FIG. 1 (color online). Quantum wire in the regime of small
applied bias, �l ��r ¼ eV. The electric current is given by
total currents of the right- and left-moving electrons, I ¼ eðjR þ
jLÞ. The equilibration processes convert some of the right-
moving electrons into the left-moving ones, thereby reducing
the conductance of the wire.
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jREðlÞ þ jLEðrÞ ¼ jE � _ER: (7)

The energy currents in the left-hand side of Eq. (7) are
again controlled by the leads and can be easily computed
using the distribution function (1) of noninteracting elec-
trons. At low temperatures T � � one finds jREðlÞ þ
jLEðrÞ ¼ ð2eV=hÞ�, up to corrections as small as e��=T .

Since the energy current jE does not depend on the
position in the wire, one can calculate it in a region away
from the leads, where the distribution function is given by
Eq. (2). The formal calculation gives jE ¼ �ð1þ
�2T2

eq=6�
2
eqÞj, where we discarded terms of order

OððTeq=�eqÞ4Þ and higher. This result can be compared

with the above-mentioned calculation for the unperturbed
distribution (1), which can be summarized as jE ¼ �j. The
difference can be traced back to the energy dependence of
the term vdp in the Fermi function (2). Expressing the
particle current as j ¼ I=e we then find

2e2

h
V ¼

�
1þ �2

6

�
T

�

�
2
�
I � e

�
_ER: (8)

This result is obtained in the linear order in the applied
bias, which enabled us to substitute Teq ¼ T and�eq ¼ �.

In the absence of the scattering processes changing the
number of the right- and left-moving electrons, not only
_NR, but also _ER would vanish. Indeed, in this case the two
branches of excitations would represent two electron sys-
tems with no particle exchange allowed. Then the distri-
bution function (1) would describe the systems of right-
and left-movers in thermal equilibrium with each other,
and the net heat transfer between them would vanish. Thus
both _NR and _ER arise as a consequence of the same
relaxation mechanism inside the wire, and we will now
show that there is a simple relation between these rates.

In the case of a short wire it was shown [18] that the
dominant process changing the number of right-movers
involves three electrons, with a right-mover near the bot-
tom of the band reducing its momentum and thus the
direction of motion, Fig. 2(a). The conservation of mo-
mentum then requires that the other two electrons increase
their momenta. Finally, conservation of energy requires
one of these two electrons to be near the right Fermi point,
and the other near the left one. The typical momentum
change is controlled by the temperature, j�pj � T=vF. As
a result of such scattering events the distribution function
(1) shows only a small modification whereby the exponen-
tially small discontinuity near p ¼ 0 is smeared.

A much more significant change occurs in longer wires,
where the relaxation processes bring the distribution
function to the form (2). A comparison of the distribu-
tion functions (1) and (2) shows that the main difference
between them is at the values of momentum p near the
Fermi points�pF. Thus the dominant relaxation processes
contributing to _NR take electrons with p � pF and move
them to p � �pF. Such processes are realized in many

small steps of j�pj � T=vF and are accompanied by mul-
tiple electrons scattering near the two Fermi points, see
Fig. 2(b). The total momentum transferred to these elec-
trons is 2pF. Energy conservation requires that it is dis-
tributed evenly between the right- and left-movers, so that
the resulting energy increase �ER ¼ vFpF is compensated
by the decrease �EL ¼ �vFpF.
In the end, the energy balance for the right-moving

electrons consists of a loss of �F, which was the energy
of the electron changing direction, and a gain of vFpF ¼
2�F due to the redistribution of momentum. As a result, for
every right-moving electron that changes direction,
�NR ¼ �1, the right-movers’ energy increases by an
amount �ER ¼ �F. We thus conclude that

_ER ¼ �� _NR; (9)

where we replaced �F with �, as the small difference ��
�F � T2=� turns out to be irrelevant for our purposes. It is
important to note that the result (9) is not sensitive to the
specific details of the electron relaxation mechanism.
Indeed, the two key ingredients of this derivation are the
conservation laws that control the redistribution of mo-
mentum 2pF between the right- and left-movers, and the
quadratic dispersion that governs how the energies of the
two subsystems change as a result of that redistribution.
By analyzing the conservation laws we have so far been

able to establish three linear relations (5), (8), and (9)
between four quantities, V, I, _NR, and _ER. Assuming that
the applied bias V is known, we can now express the
remaining three quantities in terms of V. Most importantly,
we find I ¼ GV, with the conductance

G ¼ 2e2

h

�
1� �2

12

�
T

�

�
2
�
; (10)

where we restricted ourselves to the leading order term in
ðT=�Þ2.

)b()a(

µµ TT

FIG. 2 (color online). Illustration of the relaxation processes
converting a right-moving electron into a left-moving one. The
parabolas represent the quadratic dispersion �p ¼ p2=2m of the

electrons in the wire. (a) A three-particle process studied in
Ref. [18]. Momentum and energy conservation ensure that as a
right-mover changes direction, another right-mover increases its
energy and a left-mover decreases it. (b) Transfer of an electron
from the right to the left Fermi point is accompanied by multiple
right-movers increasing their energies and multiple left-movers
decreasing energies.
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The quadratic in temperature correction to the quantized
conductance 2e2=h of the wire is our main result. Unlike

the correction to the conductance of a short wire �G /
e��=T [18], our correction shows power-law dependence
on the temperature. Earlier papers [3–5] on the conduc-
tance of long quantum wires did not find any correction to
the conductance, as the Luttinger-liquid theory used there
does not account for the relaxation processes leading to our
result (10).

Experimentally, small temperature-dependent correc-
tions to quantized conductance have been observed in
quantum point contacts [6–9]. The latter are essentially
short quantum wires, with only a few electrons in the one-
dimensional part of the device. In order for our result (10)
to be fully applicable the length of the system should be
sufficient to ensure full equilibration of the electron distri-
bution function. Comparison of our correction �G�
ðT=�Þ2 with the result [18] for short wires, �G /
Le��=T implies that our result is applicable at L � leq /
e�=T , in agreement with the more detailed calculation [19].
Although some experiments with longer quantum wires
have been reported [10,12], a careful study of the
temperature-dependent corrections to the conductance is
not yet available.

In summary, we have shown that in a long quantum
wire, the full equilibration of the electron distribution
function leads to a finite correction to the conductance,
which at T � � is quadratic in temperature, Eq. (10). Our
derivation relied uniquely on an analysis of the conserva-
tion laws for energy, momentum, and particle number,
without making specific assumptions regarding the process
of equilibration.
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