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We study the effect of thermal equilibration on the transport properties of a weakly interacting one-
dimensional electron system. Although equilibration is severely suppressed due to phase-space restrictions and
conservation laws, it can lead to intriguing signatures in partially equilibrated quantum wires. We consider an
ideal homogeneous quantum wire. At finite temperature we find a correction to the quantized conductance,
which for a short wire scales with its length, but saturates in the limit of an infinitely long wire. We also discuss
thermoelectric properties of long quantum wires. We show that the uniform quantum wire is a perfect thermo-
electric refrigerator, approaching Carnot efficiency with increasing wire length.
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I. INTRODUCTION

The quantization of the dc conductance in ballistic quan-
tum wires, first observed about two decades ago,1,2 is one of
the fundamental discoveries of mesoscopic physics. The
staircaselike dependence of the conductance on the electron
density, with plateaus at integral numbers of 2e2 /h is readily
understood from the single-electron picture.3 The latter asso-
ciates each plateau with a fixed number of occupied elec-
tronic subbands, each supplying one quantum of conduc-
tance 2e2 /h. On the other hand, interactions between one-
dimensional electrons often lead to qualitatively new
phenomena. These are commonly described within the so-
called Luttinger-liquid theory,4 drastically different from
Landau’s Fermi-liquid description applicable to higher-
dimensional systems. The remarkable success of the simple
single-electron picture in describing the quantization of con-
ductance is attributed to the fact that quantum wires are al-
ways connected to two-dimensional leads, where interactions
between electrons do not play a significant role. In fact, it
was shown in Refs. 5–7 that in an ideal Luttinger liquid
connected to Fermi-liquid leads, the dc conductance is com-
pletely controlled by the latter and, therefore, is not affected
by interactions in the wire.

For that reason, the discovery of small temperature-
dependent deviations from perfect quantization8–16 of the
conductance of quantum wires at low electron densities
raised a lot of interest. These generally manifest themselves
as a shoulderlike structure just below the first plateau of con-
ductance. Weak at the lowest temperatures available, this
feature becomes more significant as the temperature is in-
creased, turning into a quasiplateau at about 0.7� �2e2 /h�. A
number of theoretical efforts trying to reveal the microscopic
mechanism of this so-called “0.7 structure” have been made.
Several spin-related approaches attribute the effect to spon-
taneous polarization of the electron spins in the wire8,17,18 or
the existence of a local spin-degenerate quasibound state
playing the role of a Kondo impurity.19,20 Other approaches
discuss the role of scattering from plasmons,21 spin waves,22

or phonons.23

Despite the absence of a commonly accepted microscopic
theory, it is generally recognized that electron-electron inter-

actions must be included to account for the effect. As a con-
sequence, a number of recent publications reconsider the ef-
fect of interactions on the transport properties of one-
dimensional conductors, going beyond the picture of an ideal
Luttinger liquid.17–19,22,24–33 Here we focus on a very funda-
mental aspect of interactions, studying how they lead to the
equilibration inside the wire of electrons coming from the
two leads. We emphasize that this effect is absent in an ideal
Luttinger liquid. Indeed, the bosonic elementary excitations
of the Luttinger liquid have infinite lifetime; thus, there is no
relaxation toward equilibrium in these systems, no matter
how strong the interactions. Within the Luttinger-liquid
theory the processes leading to the equilibration of the elec-
tron system would be accounted for by the additional terms
in the Hamiltonian, which are irrelevant in the
renormalization-group sense. Instead of pursuing this strat-
egy, we consider the regime of weakly interacting electrons,
thereby avoiding the complexity of the Luttinger-liquid pic-
ture.

Noninteracting electrons propagate ballistically through
the wire and, therefore, keep memory of the lead they origi-
nated from. Thus the distribution function of electrons inside
the wire depends on the direction of motion. For the right-
and left-moving particles it is controlled, respectively, by the
left and right lead,

fp
�0� =

��p�
e��p−�l�/T + 1

+
��− p�

e��p−�r�/T + 1
. �1�

Here �p is the energy of an electron with momentum p and
��p� is the unit step function. The left and right leads are
assumed to have the same temperature T, but different
chemical potentials �l=�+eV and �r=� �see Fig. 1�. Using
distribution function �1� one easily finds the electric current
I=G0V, with the conductance

G0 =
2e2

h

1

e−�/T + 1
, �2�

which coincides with the well-known conductance quantum
2e2 /h up to an exponentially small correction �e−�/T.
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In the presence of interactions, the ballistic propagation of
electrons through the wire may be interrupted by collisions
with other electrons. As a result of these collisions, some
electrons change their direction of motion thus losing the
memory of the lead they originated from. Such scattering
processes modify the electron distribution function which is
then no longer given by Eq. �1�. The effect of the electron-
electron collisions on the distribution function depends
strongly on the length of the wire. Indeed, electrons traverse
short wires relatively fast, so the interactions do not have the
time to change distribution �1� considerably. On the other
hand, in the limit of a very long wire one should expect full
equilibration of left- and right-moving electrons into a single
distribution, even in the case of weak interactions.

To simplify the subsequent discussion, in this paper we
consider the case of electrons with quadratic spectrum, �p
= p2 /2m, where m is the electron effective mass. Then the
system is Galilean invariant, and one can easily infer the
electron distribution function in the fully equilibrated state.
Viewed from a frame moving with the drift velocity vd
= I /ne �where I is the electric current and n is the electron
density� the electron system is at rest and must be described
by the equilibrium Fermi distribution. Performing a Galilean
transformation back into the stationary frame of reference
this distribution takes the form

fp =
1

e��p−vdp−�̄�/T + 1
, �3�

where the chemical potential �̄ and temperature T inside the
equilibrated wire are, in general, different from �l/r and T. At
zero temperature, T=T=0, distributions �1� and �3� coincide,
provided �l/r= �̄�vdpF, where pF=��n /2 is the Fermi mo-
mentum of the system. At nonzero temperature distribution
function �3� of electrons inside the wire is slightly different
from distribution �1� supplied by the leads. In a previous
work26 we have shown that the mismatch of the distribution
functions inside a very long wire and in the leads results in
additional contact resistance, reducing the conductance to

G	 =
2e2

h
�1 −

�2

12
� T

�
�2� . �4�

It is worth noting that the quadratic in T /� correction in Eq.
�4� is much more significant than the exponentially small
correction in Eq. �2�.

The mechanism of equilibration of the electron distribu-
tion function in one dimension is not fully understood. While
in higher-dimensional systems equilibration at low tempera-
ture is primarily provided by pair collisions of electrons,
these do not provide a relaxation mechanism in one dimen-
sion. This is due to the conservation laws for momentum and
energy which severely restrict the phase space available for
scattering processes �Fig. 2�a�	. As a result, pair collisions in
one-dimensional wires can only occur with a zero-
momentum exchange or an interchange of the two momenta,
leaving the distribution function unaffected. The leading
equilibration mechanism thus involves collisions of more
than two particles. For a weakly interacting system, it is then
natural to assume that equilibration is provided by three-
electron-scattering processes.

The effect of three-particle collisions on the transport
properties of short wires has been studied in a recent work by
Lunde et al.27 In such short systems the effect of equilibra-
tion is weak and the distribution function can be calculated
perturbatively from the distribution of noninteracting elec-
trons �Eq. �1�	 within the Boltzmann equation framework.
Following this approach, Lunde et al.27 obtained interaction-
induced corrections to transport, which they attributed to
specific three-particle scattering events that change the num-
ber of left and right movers. Indeed, in the absence of inter-
actions, the current flowing through the system can be
viewed as the superposition of the right- and left-moving
flows of electrons supplied by the left and right leads, respec-
tively. Once interactions are included, these individual con-
tributions change due to electron-electron collisions, and one
needs to account for the fact that electrons can now change
direction. The electric current flowing through the wire is
thus given by the sum of the noninteracting part I0=G0V, and
the change in, say, the number of right-moving electrons in-
side the wire

I = G0V + eṄR. �5�

Interaction-induced corrections to transport therefore arise
from processes which change the number of right- and left-
moving electrons rather than a change in the velocity of the
charge carriers, as also pointed out in Ref. 27.

L

T

µrµl

T

FIG. 1. �Color online� Schematic picture of the quantum wire of
length L which is formed by confining a two-dimensional electron
gas with gates �dark regions�. Electrons in the left and right lead are
described by Fermi distribution functions characterized by tempera-
ture T and chemical potentials �l and �r, respectively.
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FIG. 2. �Color online� �a� Energy-conserving two-particle scat-
tering process violates conservation of momentum. Such processes
can occur only in inhomogeneous systems. �b� Dominant three-
particle collision which gives rise to corrections to the conductance
of short quantum wires �Ref. 27�. A hole at the bottom of the band
scatters off electron excitations close to the Fermi level.
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As shown by Lunde et al.,27 the most efficient three-
particle process changing the number of right-moving elec-
trons involves scattering of an electron into an empty state
near the bottom of the band �see Fig. 2�b�	. By calculating

the resulting ṄR, they obtained the correction to conductance
�2� of the wire of the form


G = −
2e2

h

L

leee
e−�/T, �6�

where the length leee is determined by the interaction strength
and shows a power-law temperature dependence. The expo-
nential smallness of the correction �6� is due to the small
probability of finding an empty state near the bottom of the
band. Since the small backscattering probability grows lin-
early with the length L, the correction 
G�L.

Because the same three-particle processes are responsible
for the thermal equilibration of distribution �1� into Eq. �3�,
the papers Refs. 26 and 27 reviewed above study the same
physical phenomenon, albeit in the opposite limits of a long
and a short wire. In the present paper we bridge the gap
between these two limits. We discuss how the electron dis-
tribution evolves from out-of-equilibrium form �1� in a short
wire to fully equilibrated form �3� in a long wire, and study
how transport is affected by the process of equilibration. Our
analysis focuses on weak electron-electron interactions. It is
thus formulated entirely in terms of electrons, and does not
use the bosonization technique.

The paper is organized as follows. In Secs. II and III we
investigate how the conductance changes with increasing
length of the wire. In Sec. II we expand on the kinetic-
equation treatment27 of backscattering in short wires and
study the length dependence of the conductance while the
correction 
G remains exponentially small. In Sec. III we
turn to the regime of exponentially long wires, where the
correction 
G��e2 /h��T /��2 �cf. Eq. �4�	. In Sec. IV we
study the thermoelectric effects and show that the uniform
quantum wire is a perfect thermoelectric refrigerator, attain-
ing Carnot efficiency with increasing wire length. Details of
some calculations can be found in the Appendices.

II. CONDUCTANCE OF SHORT WIRES

Consider a quantum wire of length L, connected by ideal
reflectionless contacts to noninteracting leads biased by volt-
age V. We are interested in the process of thermal equilibra-
tion of the electrons inside the wire, i.e., in how the transition
from distribution �1� to distribution �3� occurs, and how it
affects the transport properties of the system.

Following Lunde et al.,27 we describe the electron trans-
port in the wire in the framework of the Boltzmann equation

p

m

� fp,x

�x
= Ip,x�f	 . �7�

Here we do not explicitly write the electric-field term, as the
voltage bias is included in the boundary conditions for the
chemical potential. We consider the steady-state setup in
which the electron distribution function fp,x depends on the
position x along the wire, but not on time. The collision

integral Ip,x�f	 is, in general, a nonlinear functional of the
distribution function, whose form is determined by the scat-
tering processes affecting the distribution function. As dis-
cussed above, in our case the dominant processes are three-
particle collisions, in which case

Ip1,x�f	 = − 

p2,p3,

�2,�3



p1�,p2�,p3�

�1�,�2�,�3�

w123;1�2�3��f1f2f3�1 − f1���1 − f2��

��1 − f3�� − f1�f2�f3��1 − f1��1 − f2��1 − f3�	 , �8�

where w123;1�2�3� is the rate for scattering the set of incoming
states �p1�1 , p2�2 , p3�3� into the set of outgoing states
�p1��1� , p2��2� , p3��3��, and for notational convenience we short-
ened f i= fpi,x

.
Boltzmann equation �7� should be solved with the bound-

ary conditions stating that the distributions fp,0 of the right-
moving electrons �p0� at the left end of the wire and fp,L
of the left-moving electrons �p�0� at the right end coincide
with the distribution function fp

�0� in the leads �Eq. �1�	. The
conductance of the wire can then be found from Eq. �5�, with
the rate of change in the number of right-moving electrons
related to the collision integral via

ṄR = 2
0

L

dx
0

	 dp

h
Ip,x�f	 . �9�

Solving the Boltzmann equation exactly is a very difficult
problem due to the nonlinearity of collision integral �8�, so
one generally has to make some simplifying assumptions.
Such assumption in our case is that the temperature T is
small compared to the chemical potential �.

Clearly, at T=0 no real scattering processes are allowed,
and the unperturbed distribution fp=��pF− �p−mu�� solves
the Boltzmann equation �7� for any value of the drift velocity
u. Since in this case the collision integral Ip,x�f	 vanishes, we

get ṄR=0, and, according to Eq. �5�, the conductance of the
wire is 2e2 /h.

A finite temperature T acts in two important ways. First, it
affects states near the Fermi level: the step in the zero-T
distribution softens, providing partially occupied states in a
momentum range 
p�T /vF around the Fermi points. Sec-
ond, it ensures a finite occupation of a hole �i.e., a vacant
state� near the bottom of the band. Although the occupation
probability of such a hole is exponentially small, 1− fp
�e−�/T, its presence is crucial for the three-particle processes
that change the number of right-moving electrons �see Fig.
2�b�	. It is important to realize that the backscattering of
holes is accompanied by scattering of electrons near the
Fermi points �Fig. 2�b�	. In fact, this is the mechanism of the
equilibration of the distribution function to form �3� in long
wires. Although the backscattering rate is exponentially

small, ṄR�e−�/T, it scales with the length of the wire. Thus
the full equilibration is achieved in wires whose length L
exceeds an exponentially long equilibration length leq�e�/T.
The exact definition of leq will be given below �see Eq. �59�	.
In this section we will discuss the case of short wires, L
� leq. The regime L� leq will be discussed in Sec. III.
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A. Very short wires

We start our discussion with the case of very short wires,
recently considered by Lunde, Flensberg, and Glazman.27

The authors argued that for short enough wires, the interac-
tions have little time to change the distribution function from
its initial value fp

�0� given by Eq. �1�, allowing one to perform
a perturbative expansion in the scattering rate w123;1�2�3�. In
the lowest order, this amounts to approximating the collision
integral as

Ip,x�f	 � Ip,x�f �0�	 . �10�

Solving the Boltzmann equation to this approximation, they
obtained an expression for the modified distribution function
inside the wire, which they used to compute the electric cur-
rent to first order in the scattering rate.

The resulting correction to the conductance of the wire
has form �6�, in which microscopic details of the interaction
potential are absorbed into the length leee. Lunde et al.27

performed their calculation for a specific model of electrons
interacting via a potential defined by its Fourier transform
Vq=V0�1−q2 /q0

2�. This expression results from the expan-
sion of a general potential under the assumption that small-
momentum scattering is dominant. The parameter q0�kF ac-
counts for the screening by the nearby metallic gates, while
V0 is the zero-momentum Fourier component of the screened
Coulomb potential. Within this model, the length leee is given
by27

leee
−1 � �V0kF

�
�4� kF

q0
�4� T

�
�7

kF. �11�

A more careful treatment of the Coulomb interaction
screened by a gate leads to an additional logarithmic tem-
perature dependence in Eq. �11� �see Appendix A�.

To better understand result �6� and find the limits of its
applicability, we discuss the qualitative picture of this phe-
nomenon. Let us focus on a single three-electron collision
process. The most favorable collision involves a maximal
number of states close to the Fermi points. However, due to
the conservation of both energy and momentum, collisions
that change the number of right- and left movers cannot oc-
cur near the Fermi level, and have to involve states deep in
the electron band. As pointed out by Lunde et al.,27 the scat-
tering process most susceptible to alter the current thus typi-
cally scatters two electrons close to the Fermi points and one
electron at the bottom of the band, as schematically depicted
in Fig. 2�b�. It is convenient to think of this collision as a
process in which a deep hole, corresponding to the outgoing
electron state, is backscattered by electron excitations close
to the Fermi level. These excitations are typically associated
with a momentum change �
p��T /vF due to Fermi blocking
so that the backscattering occurs over a distance �T /vF in
momentum space. Let us furthermore characterize this pro-
cess by introducing a scattering rate 1 /�0, which can be ap-
proximated by a constant since the initial and final states
both lie at the bottom of the band.

The change ṄR in the number of right-moving electrons
per unit time, due to these three-particle collisions can then
be readily obtained. It is given by the product of the scatter-

ing rate 1 /�0 for one such collision times the number of deep
holes susceptible to be backscattered. The latter can be esti-
mated from the probability to find a left- or right-moving
hole e−�L,R/T and the number of states �T /vF� / �h /L� available
within the typical momentum range of the backscattering
process. Taking into account that the scattering of a left- or a

right-moving hole both contribute to ṄR, but with a different
sign, one finally has

ṄR =
2

�0
�e−�R/T − e−�L/T�

TL

hvF
= −

2

�0

��

hvF
e−�/TL , �12�

where ��=�R−�L, and we absorbed potential numerical
prefactors into the definition of �0. Throughout this paper we
use subscripts l and r to denote the left and right leads,
whereas superscripts L and R refer to the left- and right-
moving electrons. In short wires the chemical potentials of
electrons are not significantly affected by the scattering pro-
cesses, so �R=�l, �L=�r, and ��=eV.

We then notice that according to Eq. �5� the correction to
the conductance of the wire due to the backscattering pro-

cesses is 
G=eṄR /V. As a result we recover result �6� of
Lunde et al.,27 provided that

�0 �
leee

vF
. �13�

The derivation of Eq. �6� relied on the assumption that the
occupation probability of a deep hole is well described by
the distribution of noninteracting particles or, alternatively,
that one can approximate the collision integral according to
Eq. �10�. This approximation holds in cases where the hole
typically scatters no more than once during its propagation
through the wire, and any transition between subsystems of
left and right movers occurs in a single collision. One thus
expects this result to be valid for wires shorter than the
mean-free path of the hole l0. Since the typical momentum of

a hole contributing to ṄR is of order T /vF, we estimate l0
�T�0 / pF. Substituting estimate �13�, we obtain

l0 �
T

�
leee. �14�

For the particular model of the interaction potential used in
Ref. 27 we estimate

l0
−1 � �V0kF

�
�4� kF

q0
�4� T

�
�6

kF. �15�

In wires longer than l0, holes near the bottom of the band
experience multiple collisions while they propagate through
the wire, the distribution function deviate significantly from
unperturbed form �1�, and result �6� is no longer applicable.

B. Longer wires: l0™L™ leq

In wires longer than l0 a typical hole near the bottom of
the band is scattered many times while traversing the wire.
Each collision changes its momentum by a small amount

p�T /vF� pF, with a sign that varies in a random fashion.
The hole thus performs a random walk in momentum space.
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This picture is analogous to the diffusion of a Brownian par-
ticle in air. In the latter case, the change of momentum of the
particle in each collision is small because its mass is much
larger than that of the air molecules. Similarly to the case of
Brownian motion, one can use the small parameter 
p / pF
�T /� to bring the collision integral of holes to a much
simpler Fokker-Planck form

Ip,x�g	 � −
�

�p
�A�p�gp,x −

1

2

�

�p
�B�p�gp,x	� , �16�

where we introduced the hole distribution gp,x=1− fp,x. The
functions A�p� and B�p� entering Eq. �16� are model specific.
In the case of three-electron collisions they can be deter-
mined explicitly. They depend on the three-particle scattering
rate as well as the electron distribution function in the vicin-
ity of the Fermi level. The latter can be assumed to be un-
perturbed by the collisions in the wire as long as L� leq
�e�/T. The resulting derivation of A�p� and B�p� can be
found in Appendix B; here we provide order-of-magnitude
estimates.

First we notice that B�p� has the physical meaning of the
diffusion coefficient in momentum space, i.e., the typical
momentum change of a hole over time t behaves as ��p�2

�Bt. Assuming as before that the hole changes its momen-
tum by �T /vF once during time �0, we conclude that
��p�2��T /vF�2t /�0 for t��0. Thus we estimate

B �
T2

vF
2�0

�
T2

vFleee
, �17�

where we used our earlier estimate �Eq. �13�	 of �0, and the
microscopic expression for leee is given by Eq. �11�.

Although B is a function of momentum p, the typical
scale of the variations of B�p� is pF. Thus for the particle at
the bottom of the band one can approximate B�p� by its
value at p=0, which we will denote as B. Then A�p� is easily
obtained by noticing that collision integral �16� has to vanish
if the hole distribution function takes an equilibrium Boltz-
mann form

gp,x
�0� = ep2/2mTe−�/T. �18�

This condition leads to the relation A�p�=Bp /2mT, which is
also confirmed explicitly in Appendix B. Using this result
one easily transforms Boltzmann equation �7� to the form

p

m

�gp,x

�x
=

B

2

�

�p
�−

p

mT
gp,x +

�gp,x

�p
� . �19�

The boundary conditions express the fact that the distribu-
tions of the right-moving holes at the left end of the wire and
that of left-moving holes at the right end are controlled by
the respective leads

gp,0 = ep2/2mTe−��+eV�/T, for p  0, �20a�

gp,L = ep2/2mTe−�/T, for p � 0. �20b�

Here we again assumed �r=� and �l=�+eV. The kinetic
equation in form �19� is applicable only to exponentially rare
holes with �p�� pF. Thus the Fermi statistics of the holes is

irrelevant, and the boundary conditions on the distribution
function have the Boltzmann form. Finally, combining our
earlier results �Eqs. �5�, �9�, and �16�	, we express the cor-
rection to conductance of the wire as


G =
e

V
ṄR, �21a�

with

ṄR =
B

h


0

L

dx� �gp,x

�p
�

p=0
, �21b�

i.e., conductance is determined by the behavior of the distri-
bution function near p=0.

The solution of Eq. �19� with boundary conditions �Eq.
�20�	 shows two different regimes, depending on the length
of the wire. In relatively short wires the effect of hole scat-
tering is weak, and to first approximation one can assume
that the distribution function gp,x does not depend on position
x and coincides with distribution �20� provided by the leads.
This distribution is discontinuous at p=0, namely gp
→e−�l,r/T at p→ �0. To be more precise, one should notice
that the Fokker-Planck approximation applies to wires of
length in the range l0�L� leq. At the lower end of this
range, L� l0 the holes near the bottom of the band are scat-
tered a few times by the electrons near the Fermi level and
change their momentum by �T /vF. Thus in the center of the
wire the discontinuity of the distribution gp is smeared by
��p�0�T /vF. As the wire length increases, the diffusion of
holes in momentum space becomes more pronounced, and at
a certain length scale l1 the smearing �p reaches a larger
scale ��p�1= �mT�1/2. �Indeed, ��p�1 / ��p�0��� /T�1.	 We
shall consider the regimes L� l1 and L� l1 separately, as
different approximations can be applied to kinetic equation
�19� in these two cases. The estimate for the length scale l1
will be obtained below �see Eq. �24�	.

1. Wires of length in the range l0™L™ l1

Let us present the hole distribution function as g=g�0�

+ g̃, where gp,x
�0� is equilibrium distribution �18� and g̃p,x is the

correction caused by the applied bias V. �At small bias we
expect g̃�V.� The distribution gp,x

�0�, of course, satisfies kinetic
equation �19�. Then, since Eq. �19� is linear in g, it also fully
applies to g̃p,x. It is important to note, however, that the two
terms in the right-hand side of this equation are not of the
same order of magnitude. Indeed, at p��p we have �g̃ /�p
� g̃ /�p� �p /mT�g̃, provided �p� �mT�1/2. Thus the propa-
gation of holes through the wires of length L in the range
l0�L� l1 is described by the simplified equation

p

m

� g̃p,x

�x
=

B

2

�2g̃p,x

�p2 . �22�

To find the correction to conductance �21� for a wire in
the regime l0�L� l1 one needs to solve this equation with
the appropriate boundary conditions deduced from Eq. �20�.
We leave such a complete solution for future work. Instead,
we perform a simple dimensional analysis to conclude that
the step in the distribution function near p=0 is broadened
by
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�p � �BmL�1/3. �23�

This result can also be obtained from a simple physical ar-
gument. Figure 3 shows the hole distribution function gp,x at
different positions along the wire. The scattering processes
contributing to the electric current involve holes entering
from the right lead with momentum �p, moving to the left
with their velocity gradually decreasing, and eventually re-
turning to the right lead. In order to lose the momentum of
order �p the hole has to experience sufficiently many colli-
sions in the wire, which requires time t determined from the
standard diffusion condition ��p�2�Bt. Propagating through
the wire at a typical velocity �p /m until the turning point,
the hole will move by distance ��p /m�t�L. Combining
these two estimates, we recover our earlier result �Eq. �23�	.

At this point we can estimate the upper limit l1 on the
length of the wire L, to which the approach used here is
applicable. In order to neglect the term B�� /�p���p /2mt�g̃	 in
the right-hand side of Eq. �22� we assumed �p� �mT�1/2.
From Eq. �23� we see that this approximation fails when the
length of the wire reaches the value

l1 �
�mT3�1/2

B
� ��

T
�1/2

leee, �24�

where we also used our earlier estimate �17� of B. As ex-
pected, l1� l0 �see Eq. �14�	; i.e., the approach used in this
section applies to a parametrically broad range of wire
lengths.

To find the effect of three-particle scattering on the con-
ductance of the wire we use the boundary conditions �Eq.
�20�	 to estimate

� �gp,x

�p
�

p=0
� −

1

�p

eV

T
e−�/T.

Substituting this estimate into Eq. �21�, we obtain the correc-
tion to the conductance in the form


G � −
2e2

h
� L

l1
�2/3

e−�/T. �25�

This correction should be compared with result �6� of Lunde
et al.27 Both expressions are exponentially small and grow

with the length of the wire, but correction �25� shows a
slower growth, 
G�L2/3, rather than linear growth in Eq.
�6�. One can easily check that at the crossover, L� l0, results
�6� and �25� are of the same order of magnitude.

2. Wires of length in the range l1™L™ leq

As mentioned above, a hole near the bottom of the band
performs a random walk in momentum space. In the case of
wires longer than l1 one needs to carefully consider the effect
of the parabolic spectrum of the hole −p2 /2m. This spectrum
plays the role of a potential barrier for the random walker
�see Fig. 4�. In order for the hole to backscatter, and thus
change sign of its momentum, it has to overcome the barrier.
The rate of such backscattering events is controlled by the
height of the barrier measured from the Fermi level, and is
exponentially small as e−�/T. Evaluating the prefactor of
backscattering rate is an interesting problem, similar to that
of a Brownian particle escaping from a local minimum of the
external potential. The general features of this problem are
well understood.34 In order to overcome the barrier the par-
ticle has to not just reach the top, but move beyond it far
enough for the potential to drop below the maximum by
more than the temperature T. Applied to a hole diffusing in
momentum space, this means that the backscattering is con-
trolled by the region of width �p��mT around p=0.

In wires shorter than l1 this process cannot fully develop
because of the small time needed for the hole to traverse the
wire, and one has to include into consideration the spatial
dependence of the distribution function gp,x. At L� l1 the
holes spend enough time inside the wire to fully complete
the backscattering process. Therefore, away from the ends of
the wire the distribution function no longer depends on po-
sition. As a result, the left-hand side of the kinetic equation
�19� vanishes, and it can be rewritten in the form

�

�p
�−

p

mT
gp +

�gp

�p
� = 0. �26�

To complete the mathematical formulation of the problem
one has to impose the appropriate boundary conditions on
the distribution function. Since Eq. �26� ignores the spatial
dependence of the distribution function, we cannot reuse the

0 L x

gp,Lgp,0 gp,L/2

ppp

eV
T e−µ/T

∆p

FIG. 3. �Color online� As one goes along the wire from the left
lead to the right one, the distribution function of holes changes. The
number of left-moving holes decreases as some of them turn around
and start moving to the right.

V (x)

p

-εp

x

-µr
-µl

FIG. 4. �Color online� A hole with spectrum −p2 /2m performs a
random walk in momentum space in the presence of a barrier. Back-
scattering of a hole is analogous to a Brownian particle escaping
from a local minimum of the potential, see inset.
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boundary conditions �Eq. �20�	. Instead we assume that the
chemical potentials of the right- and left-moving holes are
established by the leads and do not vary along the wire:

gp = �ep2/2mTe−��+eV�/T, for p � �mT ,

ep2/2mTe−�/T, for − p � �mT .
� �27�

This assumption implies that the total number of backscat-
tered holes is too small to affect the chemical potentials. This
is justified by the fact that the backscattering rate is expo-
nentially small. In wires of exponentially large length L
� leq this condition is violated. The latter regime will be
discussed in Sec. III.

The solution of Eq. �26� with boundary conditions �Eq.
�27�	 is straightforward and gives

gp = ep2/2mTe−�/T�1 +
e−eV/T − 1
�2�mT


−	

p

e−p�2/2mTdp�� . �28�

This distribution function smoothly interpolates between the
boundary conditions �Eq. �27�	 imposed by the applied bias.
As expected, the crossover occurs in a narrow region of
width �p��mT at the bottom of the band.

To linear order in eV /T we find

� �gp

�p
�

p=0
= −

eV
�2�mT3

e−�/T, �29�

resulting in the backscattering rate

ṄR = −
eVBL

h�2�mT3
e−�/T �30�

�see Eq. �21b�	. As a result, the correction to conductance
�21a� takes the form


G = −
2e2

h

L

l1
e−�/T, �31�

where we have used the following precise definition

l1 =
�8�mT3

B
�32�

of the length l1, consistent with our earlier estimate �Eq.
�24�	. It is worth mentioning that for wires of length L� l1
expressions �25� and �31� give the same estimate for 
G.

Result �31� has the form similar to prediction �6� of Lunde
et al.27 for short wires, L� l0. Both expressions for the cor-
rection to the conductance are exponentially small, but grow
linearly with the length of the wire L. However, due to sub-
linear growth �25� in the intermediate range of wire lengths
l0�L� l1, the prefactor l1

−1 in Eq. �31� is parametrically
smaller than leee

−1 in Eq. �6� �see Eq. �24�	.
Result �31� can be derived qualitatively, following argu-

ments similar to the ones used in Sec II A. There the change

ṄR in the number of right-moving electrons per unit time was
estimated as the ratio of the number of holes likely to back-
scatter and the average time �0 of such backscattering event
�see Eq. �12�	. Compared to the case of very short wires
considered in Sec II A, for a hole to change direction, it must
now cover a larger distance ��p�1��mT� ��p�0�T /vF in

momentum space set by the smearing of the discontinuity of
the distribution function at the bottom of the band. The num-
ber of states available for the passage is thus larger by a
factor ��p�1 / ��p�0��� /T compared to the case of a very
short wire �Sec II A�. On the other hand, even though the
typical time between two three-particle collisions is still
given by �0, it now takes many such collisions for a hole to
complete the backscattering process. Because the hole per-
forms a random walk in momentum space, the time �1 it
takes to cover the longer distance ��p�1 can be estimated
from �1 /�0���p�1

2 / ��p�0
2�� /T. Combining both effects we

find that the correction to conductance �31� should be smaller
than �Eq. �6�	 by a factor of �� /T, in agreement with Eq.
�24�.

III. CONDUCTANCE OF LONG WIRES

In short quantum wires, the distribution function of elec-
trons remains close to unperturbed form �1� provided by the
leads. The main change due to the processes of electron col-
lisions occurs near the bottom of the band, with the discon-
tinuity at p=0 being gradually smeared as the wire length L
increases. Because the discontinuity affects only electrons
deep below the Fermi level, the effect of collisions is expo-
nentially small. In particular, this enabled us to neglect the
effect of collisions on the chemical potentials and assume
that to first approximation the right- and left-moving elec-
trons remain in equilibrium with the left and right leads,
respectively.

A much more significant change occurs in long wires, L
� leq�e�/T, for which the exponential suppression of the
equilibration effects is compensated by a large system size.
Once the length of the wire becomes exponentially large, the
relaxation of the electron system becomes significant, and
eventually, at L� leq the distribution function assumes the
fully equilibrated form of Eq. �3�. Unlike the relatively minor
modification of the distribution function in short wires, the
difference between distributions �1� and �3� is not exponen-
tially small and, more importantly, concentrated near the
Fermi points, rather than at the bottom of the band. In this
section we consider the conductance of the partially equili-
brated wires, of length L� leq. We start by discussing the
form of the electron distribution in this regime.

A. Electron distribution function in the case
of partial equilibration

Let us consider a segment of the wire, whose length �L is
small compared to the equilibration length leq�e�/T. This
condition implies that a typical electron with energy near the
Fermi level passes through the segment without backscatter-
ing. On the other hand, �L is assumed to be sufficiently large
for electrons to experience multiple three-particle collisions,
which do not result in backscattering. Under these circum-
stances, the electron distribution function in the segment will
achieve a state of partial equilibration, in which the numbers
NR and NL of the right- and left-moving electrons are not
changed by collisions. The form of this distribution can be
obtained from a general statistical-mechanics argument. The
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multiple collisions occurring in the system will maximize the
entropy of the noninteracting electrons

S = − 2

p

�fp ln fp + �1 − fp�ln�1 − fp�	 , �33�

while preserving the total energy, momentum, NR, and NL,
given by

E = 2

p

�pfp, �34a�

P = 2

p

pfp, �34b�

NR = 2 

p0

fp, �34c�

NL = 2 

p�0

fp. �34d�

Subtracting from functional �33� the expressions for con-
served quantities �34a�–�34d� with the Lagrange multipliers
�, −�u, −��R, and −��L, respectively, and differentiating
with respect to fp, we find that the maximum of entropy is
achieved for the distribution

fp =
��p�

e��p−up−�R�/T + 1
+

��− p�

e��p−up−�L�/T + 1
. �35�

Here T=1 /� is the effective temperature, parameter u has
dimension of velocity and accounts for conservation of mo-
mentum in electron collisions, �R and �L are the chemical
potentials of the right- and left-moving particles.

It is worth mentioning that distribution �35� does not ap-
ply to particles near the bottom of the band, p��mT. In-
deed, for a hole near p=0 collisions with and without back-
scattering �i.e., the change of the sign of p� are roughly
equally likely. Thus the above discussion is not applicable in
this case. In order to find the form of the distribution func-
tion near the bottom of the band, one should perform an
analysis similar to that of Sec. II B 2. In particular, the expo-
nentially small discontinuity of distribution �35� at p=0 will
be smeared. On the other hand, most quantities of interest are
determined by the behavior of the distribution function near
the Fermi level. For instance, using Eq. �35� we obtain the
electric current in the form

I =
2e

h
�� + enu , �36�

up to corrections small as e−�/T. Here ��=�R−�L.
It is instructive to see how distribution �35� interpolates

between the regimes of no equilibration �Eq. �1�	 and that of
full equilibration �3�. Unperturbed distribution �1� is ob-
tained from Eq. �35� by setting u=0 and identifying the
chemical potentials with those in the leads: �R=�l and �L

=�r. In this case ��=eV, and Eq. �36� reproduces the Lan-
dauer formula. Fully equilibrated distribution �3� is obtained
from Eq. �35� by setting ��=�R−�L=0. In this case electric
current �36� is expressed as I=enu, which identifies param-
eter u with the drift velocity vd.

In the regime when distribution function �35� differs from
limiting cases �1� and �3� it is convenient to quantify the
degree of equilibration in the wire by the parameter

� =
u

vd
. �37�

The case of no equilibration corresponds to �=0 and that of
full equilibration to �=1.

The meaning of distribution function �35� can be further
clarified by considering Boltzmann equation �7�. The scatter-
ing processes contributing into collision integral �8� fall into
two categories. The strongest processes preserve the numbers
of the right- and left-moving electrons, whereas the ones
resulting in backscattering are exponentially weak, as dis-
cussed by Lunde et al.27 and also above in Sec. II. Let us
approximate collision integral �8� by neglecting the weak
backscattering processes. Then, by substituting distribution
�35� into the right-hand side of Eq. �8�, one easily sees that
each term in the sum vanishes. Thus distribution �35� solves
Boltzmann equation �7� in this approximation. Furthermore,
in the absence of backscattering solution �35� applies for any
choice of parameters T, u, �R, and �L, and in particular, for
any degree of equilibration �. The value of � is ultimately
determined by the exponentially weak backscattering pro-
cesses and the length of the wire.

B. Conservation laws

Conductance of a long quantum wire, in which the elec-
tron distribution function is fully equilibrated, was studied in
Ref. 26, where a power-law correction to the quantized con-
ductance was obtained �Eq. �4�	. The derivation of this result
was based on an analysis of conservation laws for the num-
ber of electrons, energy, and momentum satisfied in electron
collisions. Here we perform a similar analysis for a partially
equilibrated wire.

Conservation of the total number of particles N implies
that in a steady state the particle current j�x� is uniform along
the wire. Correspondingly, we infer from the conservation of
total momentum P and total energy E that in the steady state
a constant momentum current jP and a constant energy cur-
rent jE flow through the system. In the following it will be
convenient to express these currents as the sum of the indi-
vidual contributions from left- and right-moving electrons,
e.g., j= jR+ jL, thus introducing

jR/L�x� = 
−	

	 dp

h
���p�vpfp,x, �38a�

jP
R/L�x� = 

−	

	 dp

h
���p�vppfp,x, �38b�

jE
R/L�x� = 

−	

	 dp

h
���p�vp�pfp,x. �38c�

Here vp= p /m is the electron velocity, the positive sign in the
step function corresponds to right movers, while the negative
one to left movers.
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Near the ends of the wire, the distribution function of
incoming electrons is controlled by the leads. Close to the
left lead, the distribution fR of right-moving electrons thus
assumes the form of the first term in Eq. �1�, and similarly,
close to the right lead, the left movers’ distribution fL is
given by the second term in Eq. �1�. This allows us to readily
calculate, for example, the current jR�l� of right-moving elec-
trons near the left end of the wire. Unlike the total current j,
the current jR�x� is not uniform throughout the system, since
the equilibration processes ensure the conversion of right-
moving electrons into left-moving ones. From conservation
of the number of particles it follows that the total number of
right-moving electrons changing direction per unit time
equals the difference between their outgoing and incoming
flows at the right and left leads

ṄR = jR�r� − jR�l� . �39�

A calculation of jR�r� requires the knowledge of the distribu-
tion of right-moving electrons at the right end of the wire. As
the latter is unknown, we proceed by expressing jR�r� in
terms of the total particle current j and the incoming flow of
left movers supplied by the right lead

jR�r� = j − jL�r� , �40�

where jL�r� can now be determined from the known electron
distribution in the right lead. Combining Eqs. �39� and �40�
we can relate ṄR to the total incoming flow of particles as

jR�l� + jL�r� = j − ṄR. �41�

Using lead distribution function �1� the left-hand side of Eq.
�41� is readily calculated, and takes the form G0V /e, with the
conductance G0 defined by Eq. �2�. Noticing that the electric
current I=ej, we then recover Eq. �5�. For the purposes of
this section we do not need to keep the exponentially small
corrections to G0, and upon substitution G0=2e2 /h we are
left with the relation

2e

h
V = j − ṄR, �42�

between voltage, current, and the rate of change of the num-
ber of right-moving electrons due to collisions.

Let us now analyze the consequences of energy conserva-
tion in electron-electron collisions. Repeating the above
steps for the energy current jE, we arrive at an expression

jE
R�l� + jE

L�r� = jE − ĖR, �43�

analogous to Eq. �41�. Here ĖR is the rate of change of the
energy of right movers.

The conservation of the number of electrons and energy
ensure that the currents j and jE are constant along the wire.
It is convenient to combine them into the heat current

jQ = jE − �j , �44�

which is consequently also independent of position.35 Com-
bining Eqs. �41� and �43� we find

jQ
R�l� + jQ

L �r� = jQ − Q̇R, �45�

where

Q̇R = ĖR − �ṄR �46�

is the heat transferred into the right-moving subsystem by
electron collisions.

The left-hand side of Eq. �45� is the heat current in a
noninteracting quantum wire. Direct calculation shows that it
is exponentially small �see also the discussion in the begin-
ning of Sec. IV�, and for our purposes here can be assumed
to vanish. We therefore conclude

jQ = Q̇R. �47�

Since the heat current jQ does not depend on position, it
can be calculated at any point in the wire. In the regions not
too close to the leads the distribution function is expected to
have partially equilibrated form �35�. Then, using expres-
sions �38a� and �38c� for j and jE, we obtain

jQ =
�2

6

T2

�
nu �48�

to leading order in T /�. As expected, in the absence of
equilibration, u=0, the heat current vanishes.

In Sec. III A we introduced distribution function �35� by
discussing a short segment of the wire. The four parameters
of this distribution T, u, �R, and �L may, in principle, vary
along the wire. The independence of heat current �48� on
position then shows that the velocity u and, therefore, the
degree of equilibration � are constant along the wire. Fur-
thermore, since electric current �36� and u are constant along
the wire, one concludes that the difference of the chemical
potentials ��=�R−�L is constant as well. The only two
parameters of distribution �35� that can vary along the wire
are the temperature T and the average chemical potential
��R+�L� /2. Their dependences on position are discussed in
Appendix C.

C. Relation between the degree of equilibration �
and the conductance of the wire

To make further progress we elaborate on the relationship

between the rates ṄR and ĖR, whose explicit forms depend
on the details of the equilibration mechanism. As we dis-
cussed in Sec. III A, in the absence of scattering processes
which change the number of left- and right-moving elec-
trons, distribution �35� is unaffected by electron-electron col-
lisions, i.e., collision integral �8� vanishes. In particular, for
u=0 unperturbed distribution �1� supplied by the leads would
retain its form in the wire. The backscattering processes,

which by definition contribute to ṄR, also change the energy
of the subsystem of right-moving electrons, resulting in a

nonvanishing ĖR. Because both rates are caused by the same
backscattering processes, one expects to find a relation be-

tween ṄR and ĖR. Here we establish such a relation with the
help of conservation laws. An alternative and more formal
derivation can be found in Appendix D.
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The backscattering processes transform unperturbed dis-
tribution �1� to partially equilibrated form �35� with nonvan-
ishing u. The two distributions differ most prominently at
energies within �T of the Fermi level. One can thus assume

that all the right-moving electrons contributing to ṄR are
removed from the vicinity of the right Fermi point and
placed to the vicinity of the left one. Each such transfer
reduces the momentum of the system by 2pF. Since the
electron-electron collisions conserve momentum, a number
of other electrons have to be scattered in the vicinities of the
two Fermi points �see Fig. 5�. In the special case of three-
particle collisions, the transfer of electron from the right
Fermi point to the left one is accomplished in a number of
small steps with momentum change 
p�T /vF, and at each
step one additional electron is scattered near each of the two
Fermi points �see Fig. 2�b�	.

As a result of the rearrangement of electrons near the two
Fermi points, the momentum change 2pF of the backscat-
tered electrons is distributed between the remaining right-
and left-moving electrons; i.e., �pR+�pL=2pF. Thus the
energy of the remaining right movers increases by �QR

=vF�pR whereas that of the left movers decreases, �QL

=−vF�pL. Then, the conservation of energy requires �pR

=�pL= pF. In the end, the energy balance for the right-
moving electrons consists of a loss of �F due to removal of
one particle from the Fermi level and a gain of �QR=vFpF
=2�F due to the redistribution of momentum. As a result,
for every right-moving electron that changes direction,
�NR=−1, the right movers’ energy increases by an amount
�ER=�F. It is easy to check that the difference between the
chemical potential � and the Fermi energy �F is irrelevant
for our discussion, so we conclude that

ĖR = − �ṄR. �49�

It is important to point out that this result is independent of a
specific equilibration mechanism, or the degree to which
equilibration has occurred.

Result �49� can be also expressed in the form

Q̇R = − 2�ṄR, �50�

cf. Eq. �46�, which expresses the simple fact that when a
right-moving electron is moved to the left Fermi point, the

remaining right movers gain energy, see Fig. 5. Combining
this expression with Eqs. �47� and �48�, we obtain

ṄR = − r0nu , �51�

where the dimensionless parameter r0 is defined as

r0 =
�2

12
� T

�
�2

. �52�

Noticing that by definition of the degree of equilibration �37�
nu=�nvd=�j and using the conservation of the particle
number in electron collisions, Eq. �42�, we find a linear re-
lation between the applied bias and the electric current flow-
ing through the wire. We can thus readily extract the expres-
sion for the conductance in partially equilibrated wires

G =
2e2

h
�1 − �

�2

12
� T

�
�2� , �53�

where we discarded higher-order corrections in �T /��2.
Result �53� reaffirms that at finite temperature the pro-

cesses of equilibration of the electron distribution function
lead to a deviation of the conductance from its quantized
value 2e2 /h. In a fully equilibrated wire �→1, and this cor-
rection saturates at a value that does not depend on the de-
tails of the electron-electron interaction, reproducing our ear-
lier result �Eq. �4�	. The correction to the conductance in this
situation is quadratic in temperature 
G� �T /��2, in contrast
with the results for the short wire, where 
G�e−�/T.

We obtained expression �53� for the conductance of the
wire by taking advantage of the conservation laws for the
electron-electron collisions as well as the basic properties of
the noninteracting leads the wire is connected to. Although
expression �53� is thus very general, it does not fully deter-
mine the conductance of the wire, as the parameter � cannot
be obtained in this approach, with the exception of special
cases of noninteracting electrons, �=0, and a very long wire,
�=1. To find � and, therefore, the conductance of the wire,
for arbitrary wire length, one needs to consider a specific
model of electron-electron interactions. We now turn to such
a calculation for the most relevant case of relaxation via
three-particle collisions.

D. Partially equilibrated wires and equilibration length

Our expression �Eq. �53�	 for the conductance of partially

equilibrated wires relied on relation �51� between the rate ṄR

of backscattering of right-moving electrons in the wire and
the parameter u of distribution function �35�. Another rela-

tion between ṄR and the distribution function can be found
by considering the microscopic mechanism of such back-
scattering, using the approach of Sec. II B 2. Comparison of
the two expressions will enable us to determine the degree of
equilibration � for wires of arbitrary length.

The form of the electron distribution in partially equili-
brated state �35� is controlled by four parameters, namely,
the temperature T, average chemical potential �= ��R

+�L� /2, difference of the chemical potentials ��=�R−�L,
and the velocity u. In the absence of bias V applied to the
wire, the temperature T and chemical potential � are equal to

T

p

εp

µ

FIG. 5. �Color online� Sequence of elementary scattering events
leading to the transfer of one electron from the right to the left
Fermi point. Conservation of momentum leads to the heating of the
right-moving electrons and cooling of the left-moving ones.
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those in the leads, whereas �� and u vanish. As a result
distribution �35� reproduces the equilibrium Fermi-Dirac dis-

tribution, and clearly ṄR=0. Our goal is to find ṄR to linear
order in V.

Applied bias affects the four parameters of distribution
�35� differently. As we discussed at the end of Sec. III B, the
temperature T and chemical potential � acquire position de-
pendence, whereas �� and u no longer vanish, but remain
constant along the wire. Thus, to linear order in V one ex-
pects to find for the rate ṅR of backscattering per unit length
of the wire

ṄR

L
= �1�� + �2u + �3�xT + �4�x� . �54�

Because the gradients �xT and �x� are caused by bias applied
to a long wire, they are not only proportional to V, but also
scale as 1 /L �see also Appendix C�. Thus for the exponen-
tially long wires considered here, L� leq, effect of the gradi-
ents of T and � can be neglected. It is also clear that �2=0.
Indeed, at ��=0 the distribution takes fully equilibrated

form �3�, for which no relaxation takes place, and ṄR=0 for
any u. We thus conclude that the backscattering rate ṅR can
be found for the simplest case of small ��, vanishing u, and
unperturbed �position-independent� values of the temperature
T=T and average chemical potential �.

The resulting problem is equivalent to the one considered
in Sec. II B 2. The only difference is that because the length
of the wire was assumed to be short, L� leq, the parameter
�� coincided with eV. Thus replacing eV→�� in Eq. �30�
we find

ṄR = − r1
2��

h
. �55�

Here the dimensionless parameter r1 is defined as

r1 =
L

l1e�/T , �56�

and the length l1 is given by Eq. �32�.
Our expression �Eq. �55�	 and the earlier result �Eq. �51�	

relate ṄR to two different parameters of distribution function
�35�, namely, �� and u. Both of these parameters affect the
electric current in the wire and can be expressed in terms of
the drift velocity vd= I /ne and the degree of equilibration �.
Indeed, according to definition �37� of � and expression �36�
for the current, we have

nu = �nvd,
2��

h
= �1 − ��nvd. �57�

Using these expressions to compare Eqs. �51� and �55�, we
readily find the following expression for the parameter �:

� =
r1

r0 + r1
=

L

leq + L
, �58�

where we have introduced the equilibration length

leq = r0l1e�/T. �59�

As expected, parameter � grows with the length of the
wire from 0 to 1. Because the backscattering process in-
volves rare holes at the bottom of the band, equilibration
length �59� at which the crossover occurs is exponentially
long at low temperatures.

Substituting Eq. �58� into Eq. �53� we find the following
expression for the conductance of a quantum wire:

G =
2e2

h
�1 −

�2

12
� T

�
�2 L

leq + L
� , �60�

valid for L� l1. At L→	 it recovers long wire limit �4�,
while at l1�L� leq it agrees with our earlier result �Eq.
�31�	.

IV. THERMOELECTRIC PROPERTIES OF LONG WIRES

We now turn to a situation in which the leads are not only
biased by a finite voltage V but also exposed to a temperature
drop �T. More specifically, we assume that the leads supply
the wire with the following electron distribution

fp
�0� =

��p�
e��p−�−eV�/�T+�T� + 1

+
��− p�

e��p−��/T + 1
. �61�

Our goal is to find the thermopower S, Peltier coefficient �,
and the thermal conductance K of the quantum wire. These
transport coefficients are defined by the following linear-
response relations

V = − S�T�I=0, �62�

jQ = �I��T=0, �63�

jQ = K�T�I=0. �64�

The thermopower and Peltier coefficient are not independent
properties of the system; they are connected by an Onsager
relation �=ST.

In the absence of interactions, electron distribution in the
wire is given by Eq. �61�, and its transport coefficients are
easily understood. For instance, the thermopower and Peltier
coefficient are given by

� = ST =
1

e
��e−�/T + T�1 + e−�/T�ln�1 + e−�/T�	 . �65�

At low temperature T��, expression �65� is exponentially
small, ���� /e�e−�/T. The reason is that contributions to the
heat current from electrons with energies �+� and �−� can-
cel each other, and the only reason � does not vanish com-
pletely is the absence of electronic states below the bottom
of the band. In this paper we are not interested in such ex-
ponentially small results, unless the smallness can be com-
pensated by a long length of the wire. Thus to first approxi-
mation the thermopower and Peltier coefficient of a
noninteracting quantum wire vanish. The latter conclusion
can be easily obtained from the so-called Cutler-Mott
formula36
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S =
�2T

3e

d ln G

d�F
, �66�

generally applicable to systems of noninteracting electrons at
T��F. Considering that the conductance G=2e2 /h does not
depend on the Fermi energy �F, one easily concludes that
S=0.

To the same accuracy, i.e., neglecting corrections small as
e−�/T, the thermal conductance of a noninteracting quantum
wire is

K =
2�2

3h
T . �67�

This expression can be derived by straightforward calcula-
tion of the heat current for the electron distribution �61� with
V=0. Alternatively, one can obtain Eq. �67� from the
Wiedemann-Franz law

K =
�2

3e2TG , �68�

by substituting the quantized conductance G=2e2 /h.
It is important to note that both Cutler-Mott formula �66�

and Wiedemann-Franz law �68� are not generally applicable
to systems where inelastic scattering of electrons plays an
important role. Thus one cannot expect to find the transport
coefficients S, �, and K in long quantum wires by combining
these relations with expression �60� for the conductance. Be-
low we find the transport coefficients of a long wire, whose
length L� leq�e�/T. We will see that in such wires the ther-
mopower and Peltier coefficient are no longer exponentially
small, whereas the thermal conductance K is suppressed at
L→	.

Unlike the thermopower and thermal conductance, the
Peltier coefficient � is defined in a system to which no tem-
perature bias is applied �see Eq. �63�	. One can therefore
obtain � using the results of Sec. III. In particular, we saw
that in a long wire the heat current is determined by the
parameter u of the distribution function �see Eq. �48�	. The
value of u depends on the length of the wire via expressions
�57� and �58� Combining these results we find the heat cur-
rent in the form

jQ =
�2

6

T2

�

L

leq + L
nvd. �69�

The ratio of jQ and the electric current I=envd gives the
Peltier coefficient

� =
�2

6e

T2

�

L

leq + L
. �70�

Similar to our main result �Eq. �60�	 for the conductance, Eq.
�70� is applicable at L� l1. It shows how � grows from
exponentially small values at L� leq to �2T2 /6e� at L→	.

The thermopower and thermal conductance are defined in
a system with a small temperature bias �T. To find these
transport coefficients we revise our analysis of conservation
laws �41� and �45� to add finite �T. The left-hand side of Eq.
�41� represents the particle current j= I /e in the wire with
electron distribution �61�. As we saw above, the ther-

mopower of such a wire �Eq. �65�	 is exponentially small,
and thus the effect of temperature bias on the current j is
negligible. We thus have j=2eV /h and recover Eq. �42�.

The left-hand side of Eq. �45� is the heat current in a wire
with electron distribution �61�, which does not vanish at
�T�0. It is determined by thermal conductance �67� of a
noninteracting wire. Thus instead of Eq. �47� we obtain

2�2

3h
T�T = jQ − Q̇R. �71�

The right-hand sides of Eqs. �42� and �71� are not directly
related to the voltage and temperature bias of the wire, but
are determined by parameters �� and u of partially equili-
brated distribution �35�. Indeed, the currents j and jQ do not
depend on position, and can be calculated for the internal
region of the wire using Eqs. �36� and �48�. The backscatter-
ing of the right-moving electrons predominantly happens in-
side the wire, at distances over l1 from the leads, where par-
tially equilibrated distribution �35� is established. Thus we

can express ṄR and Q̇R in terms of �� using results �55� and
�50� of Sec. III. As a result, we obtain the following two
linear equations upon the parameters �� and u,

�1 + r1�
2��

h
+ nu =

2eV

h
, �72a�

− r1
2��

h
+ r0nu =

�2

3h

T

�
�T . �72b�

The system of equations �71� can be easily solved. Then,
substituting the resulting ���V ,�T� and u�V ,�T� into Eqs.
�36� and �48�, one finds the electric current I and heat current
jQ.

On the other hand, it is easier to find the thermopower S
and thermal conductance K by noticing that definitions �62�
and �64� assume the condition of zero current I. Then, from
Eq. �36� we immediately find 2��

h =−nu and Eq. �72� reduce
to

− r1nu =
2eV

h
, �73a�

�r1 + r0�nu =
�2

3h

T

�
�T . �73b�

Excluding the unknown parameter u, we find linear relation
�62� between V and �T with

S =
�2

6e

T

�

L

leq + L
. �74�

Predictably, thermopower �74� and Peltier coefficient �70�
satisfy the Onsager relation �=ST.

Furthermore, using Eq. �73b� we express heat current �48�
in terms of �T as

jQ =
2�2T

3h

r0

r1 + r0
�T . �75�

Thus the thermal conductance takes the form
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K =
2�2T

3h

leq

leq + L
. �76�

At L� leq, Eq. �76� recovers result �67� for noninteracting
wires, but as the length of the wire grows, K is suppressed as
1 /L.

The fact that the thermal conductance K vanishes at L
→	 can be understood as follows. In an infinitely long wire
the distribution function of electrons reaches fully equili-
brated form �3� controlled by three parameters, T, �, and the
drift velocity vd. The thermal conductance is defined under
the condition that the electric current I=envd vanishes �see
Eq. �64�	. Thus vd=0 and distribution �3� takes the form of
the standard Fermi-Dirac distribution. Due to its symmetry
p→−p, the heat current jQ vanishes, regardless of the tem-
perature bias �T applied to the wire. One therefore finds that
in an infinitely long wire K=0.

The thermoelectric properties of a device are sometimes
summarized in the form of the dimensionless figure of merit
defined as

ZT =
GS2T

K
. �77�

The figure of merit measures the efficiency of thermoelectric
refrigerators. As ZT diverges, the device attains Carnot effi-
ciency. For a material to be a good thermoelectric cooler, it
must have a high value for ZT and a typical figure of merit
ZT�3 would make solid-state home refrigerators economi-
cally competitive with compressor-based refrigerators.37

However, in many materials the figure of merit is limited by
the Wiedemann-Franz law, and remains near 1.

Substituting results �74� and �76� for a long wire and ne-
glecting a small correction to the quantized conductance, we
find

ZT �
�2

12
� T

�
�2 L2

leq�leq + L�
. �78�

In short wires the thermopower is small, resulting in a small
ZT. On the other hand, the thermal conductance K is strongly
suppressed in long wires, giving rise to infinite figure of
merit at L→	.

V. DISCUSSION

In this paper we studied the transport properties of a par-
tially equilibrated quantum wire. In one-dimensional sys-
tems, equilibration of weakly interacting electrons is strongly
suppressed at low temperatures, and the resulting equilibra-
tion length leq is exponentially large, Eq. �59�. Our main
result is expression �60� for the conductance of a wire whose
length L exceeds the length scale l1 given by Eq. �32�. Be-
cause the scale l1 is only power law large at low temperature,
expression �60� describes the full crossover behavior of con-
ductance between the regimes of negligible and full equili-
bration. We have also been able to establish a connection
between result �60� and expression �6� for the correction to
the conductance of a short wire obtained by Lunde et al.27

Similar to Eq. �6�, result �60� is exponentially suppressed at

small L and grows linearly with L. However the prefactors
are parametrically different. This mismatch is resolved by
noticing that Eq. �6� is valid at L� l0, where the length l0
defined by Eq. �14� is short compared to l1. In the regime of
intermediate wire lengths, l0�L� l1, the correction to con-
ductance �25� scales with the length as L2/3. A summary of
our results for the conductance of a quantum wire as a func-
tion of its length is presented in Fig. 6.

In addition to conductance, we studied thermoelectric ef-
fects in partially equilibrated wires, limiting ourselves to the
most interesting regime L� l1. The equilibration of the elec-
tron system has a dramatic effect on the thermopower and
thermal conductance of the wire. As the length of the wire
increases, the thermopower increases dramatically, from ex-
ponentially small values at L� leq to S�T /e� at L� leq �see
Eq. �74�	. Conversely, the thermal conductance of the wire
decreases due to the equilibration of the electron system in
the wire from the Wiedemann-Franz value K=2�2T /3h to
zero �Eq. �76�	. As a result, at L� leq the quantum wire be-
comes a perfect thermoelectric refrigerator.

Although our work was in part motivated by the
experiments8–16 showing the 0.7 structure conductance of the
quantum point contacts, quantitative comparison of our re-
sults with experiments is premature. The reason is that in this
paper we assumed that the interactions are extremely weak,
whereas the experiments focus on the conductance feature at
the beginning of the first plateau, where electron density is
low and interactions are effectively strong. Nevertheless, it is
worth mentioning that the correction to the quantized con-
ductance in our main result �Eq. �60�	 behaves in a manner
similar to the well-known properties of the 0.7 structure.
Indeed, our correction grows with the temperature and is also
enhanced at lower electron densities �i.e., smaller ��. In ad-
dition, in the vicinity of the 0.7 structure experiment38

showed a lower value of the thermal conductance than pre-
dicted by the Wiedemann-Franz law, which is qualitatively
consistent with our results. On the other hand, some of the
features, such as the small plateau of thermal conductance,

2e2

h
π2

12

⎛
⎜⎝Tµ

⎞
⎟⎠
2

−δG

−δG

L

l0 l1 L

∝ L

∝ L2/3

∝ L

leq

FIG. 6. �Color online� Correction to the conductance of a quan-
tum wire as a function of its length. For wires longer than the scale
l1 the conductance is given by Eq. �60�. The behavior of the con-
ductance in the regions L� l0 and l0�L� l1 is given by Eqs. �6�
and �25�, respectively.
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are not reproduced by our theory. The final conclusion on
whether the equilibration processes may be responsible for
the 0.7 structure can be made only after our work is gener-
alized to the case of strong interactions.

In this paper we accounted for the effect of electron-
electron interactions but neglected the electron-phonon scat-
tering, which may also affect the electron distribution func-
tion. In GaAs quantum wires the phonons are three
dimensional and in equilibrium with the rest of the system.
Scattering of electrons by phonons should therefore have the
effect of equilibrating them in the stationary reference frame,
thereby reducing the degree of equilibration �. We leave the
detailed study of the effect of phonon coupling to future
work and limit our discussion here to a few qualitative re-
marks. The reason the electron-phonon coupling is typically
neglected compared to electron-electron interactions is that
respective coupling constant is much smaller for the
phonons. On the other hand, we do not expect the effect of
phonons on the electron distribution function to be exponen-
tially suppressed as e−�/T. Thus we expect that coupling to
the phonons to be negligible only at not too low tempera-
tures.

Another effect neglected in this paper is the possible pres-
ence of slight long-range inhomogeneities in the wire, which
would typically be caused by the presence of remote impu-
rities in the GaAs heterostructure. The effect of such inho-
mogeneities on the conductance was studied earlier24,25 un-
der the assumption of full equilibration of the electron
system. On the other hand, the inhomogeneities themselves
resist the equilibration process, and we expect an interesting
interplay of these effects in the case of a partially equili-
brated wire. We leave such a study to future work.
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APPENDIX A: SCREENED COULOMB INTERACTION

Let us consider the Coulomb interaction between elec-
trons screened by a nearby gate, which we model by a con-
ducting plane at a distance d from the wire. In this case, the
electron-electron interaction takes the form

V�x� =
e2

�
� 1

�x�
−

1
�x2 + �2d�2� . �A1�

The diverging short-range behavior of this potential needs to
be regularized in order to evaluate the small-momentum
Fourier components Vq. To this end, we introduce the small
width w of the quantum wire, w�d. Then the homogeneous
component V0 of the interaction potential takes the form

V0 =
2e2

�
ln� d

w
� . �A2�

For small wave vectors q�1 /d, the Fourier-transformed
potential Vq departs from the homogeneous component V0 by
an amount

Vq − V0 =
e2

�
 dx�cos�qx� − 1	� 1

�x�
−

1
�x2 + �2d�2�

� −
2e2

�
d2q2 ln� 1

�q�d� . �A3�

It then follows that the small-q behavior of the Fourier-
transformed potential is given by

Vq = V0�1 − q2d2 ln�1/�q�d�
ln�d/w� � . �A4�

This expression contains an extra logarithmic-in-q factor
compared to the expression introduced by Lunde et al.,27

Vq = V0�1 −
q2

q0
2� . �A5�

However, as argued in the text, the typical scattering pro-
cesses studied here only involve small-momentum ex-
changes, of the order �q�T /vF so that expression �A4� for
Vq reduces to the one of Eq. �A5� with

q0 =
1

d
� ln�d/w�

ln��vF/Td��
1/2

. �A6�

The model introduced in Eq. �A1�, therefore merely amounts
to an extra logarithmic temperature dependence in the length
leee, Eq. �11�.

APPENDIX B: FOKKER-PLANCK EQUATION
FOR THREE-PARTICLE COLLISIONS

In this appendix we discuss the Fokker-Planck approxi-
mation and calculate the coefficients for the interaction po-
tential used by Lunde et al.27 as well as the screened and
unscreened Coulomb interaction.

1. Fokker-Planck approximation

We start out from collision integral �8� for the three-
particle scattering process. We discussed in Sec. II that the
only contributions relevant to transport result from collisions
involving two pairs of incoming and outgoing states in the
vicinity of the right and left Fermi points, and one pair of
incoming and outgoing states at the bottom of the band �see
Fig. 2�b�	. Let p1 and p1� be the momenta near the bottom of
the band, p2 and p2� the ones near the left Fermi point, while
p3 and p3� are taken near the right Fermi point. Unprimed
momenta correspond to incoming states whereas primed
ones are associated with outgoing states. We introduce the
hole distribution gpi

=1− fpi
and the collision integral of holes

Ip,x�g	=−Ip,x�f	, which using Eq. �8�, can be recast as
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Ip1,x�g	 = 

p1�

�W�p1,p1��gp1�
− W�p1�,p1�gp1

	 , �B1�

where

W�p1,p1�� = 48 

p2,p3

p2�,p3�

W123;1�2�3�g2�g3�f1f2f3, �B2�

W�p1�,p1� = 48 

p2,p3

p2�,p3�

W123;1�2�3�g2g3f1�f2�f3�. �B3�

W�p1 , p1�� is the rate for a transition in which a hole scatters
from some state p1� into p1, while W�p1� , p1� denotes the cor-
responding transition rate for the inverse process. Here and
in what follows, all momentum summations are restricted
to the ranges discussed above. This restriction results in
a combinatorial factor of 12 in Eqs. �B2� and �B3�. The
remaining factor of 4 originates from the spin summations
as we anticipated that the main contribution to the three-
particle scattering rate w123;1�2�3� of Eq. �8� takes the
form 
�1�1�


�2�2�

�3�3�

W123;1�2�3�, with a spin-independent

W123;1�2�3�. This simplification is only valid in the limit of
small-momentum exchanges, and can be performed here
since for the Coulomb interaction V0�VkF

. Since p1 and p1�
lie near the bottom of the band, the distribution functions gp1
and gp1�

are exponentially small, and so is the collision inte-
gral of holes �Eq. �B1�	. It is therefore unnecessary to ac-
count for additional exponentially small contributions in the
scattering rates W�p1 , p1�� and W�p1� , p1�, so that one can
safely replace f1�1 and f1��1 in Eqs. �B2� and �B3�.

The Fokker-Planck approximation exploits the fact that
collisions typically induce small-momentum changes of or-
der O�T /vF�. For the following, it is convenient to introduce
the momentum exchanges q1= p1�− p1. With this notation,
W�p1� , p1� describes the transition rate for the process in
which a hole scatters with momentum transfer q1, from the
initial state p1, and can thus be rewritten as W�p1� , p1�
=Wq1

�p1�. Following the same prescription, the transition
rate for the inverse process becomes W�p1 , p1��=W−q1

�p1

+q1�. Performing a small-momentum expansion, one has

W−q1
�p1 + q1�gp1�

= W−q1
�p1�gp1

+ q1�p1
�W−q1

�p1�gp1
�

+
q1

2

2
�p1

2 �W−q1
�p1�gp1

� + O�q1
3�p1

3 �Wg�� ,

�B4�

where �pi
=� /�pi. Introducing further

A�p1� = − 

q1

q1W−q1
�p1� = 


q1

q1Wq1
�p1� , �B5�

B�p1� = 

q1

q1
2W−q1

�p1� = 

q1

q1
2Wq1

�p1� , �B6�

the collision integral of holes takes the simplified form

Ip1,x�g	 = − �p1
�A�p1�g�p1�� +

1

2
�p1

2 �B�p1�g�p1�� . �B7�

We next turn to the explicit derivation of the functions A�p�
and B�p� in the case of three-particle collisions.

2. Relation between A(p) and B(p)

The scattering rate W123;1�2�3� contains both the energy
and momentum conservation and can be rewritten as

W123;1�2�3� = 
��1� − �1 + �2� − �2 + �3� − �3�

� 
q1+q2+q3,0w�q1,q2,q3� , �B8�

where we introduced the momentum transfers qi= pi�− pi. The
function w that remains after writing the conservation laws
explicitly, should depend on all pi and pi�. However, for the
momentum configuration under consideration, p1 lies near
the bottom of the band, while p2 and p3 lie near the left and
right Fermi points, all within a small range set by tempera-
ture. We thus argue that, up to small corrections in T /�, one
can replace p1�0, p2�−pF and p3� pF in the expression for
w, which then becomes a function of q1, q2 and q3.

Using the approximated forms �2�−�2�−vFq2 and �3�
−�3�vFq3, the conservation laws allow us to express q2 and
q3 in terms of p1 and p1� as

q2 =
p1 − p1�

2
+

�1� − �1

2vF
, �B9�

q3 =
p1 − p1�

2
−

�1� − �1

2vF
, �B10�

where one readily sees that q2�q3�−q1 /2, up to small con-
tributions of order p1 / pF�1.

Substituting expression �B8� for the scattering rate into
Eq. �B3�, and using the energy and momentum conservation
laws to simplify two of the momentum summations, one has

W�p1�,p1� = 48
�L

hvF
w�q1,q2,q3� 


p2,p3

gp2
gp3

fp2+q2
fp3+q3

,

�B11�

where we focused on a section of the wire, of length �L
� leq. Here q2 and q3 are functions of p1 and p1�, as given by
Eqs. �B9� and �B10�.

The remaining momentum summations can be performed
explicitly upon linearizing the dispersion near the Fermi
level



p2

gp2
fp2+q2

= −
�L

h

q2e�vFq2

1 − e�vFq2
, �B12�



p3

gp3
fp3+q3

= −
�L

h

q3

1 − e�vFq3
, �B13�

so that the transition rate, Eq. �B11� becomes
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W�p1�,p1� =
3

vF
��L

h
�3 q1

2wq1

sinh2��vFq1

4
��1 +

�1� − �1

2T
� ,

�B14�

where we replaced q2 and q3 following Eqs. �B9� and �B10�,
and introduced wq1

=w�q1 ,−q1 /2,−q1 /2�. The leading contri-
bution to W�p1� , p1� is an even function of q1 which leads to
a vanishing A�p1� once substituted into Eq. �B5�. For that
reason, we expanded the expression for the transition rate up
to linear order in the small parameter ��1�−�1� /T� p1 / pF

�1.
The functions A�p1� and B�p1� are then readily obtained

from Eqs. �B5� and �B6� by substituting expression �B14�
above for W�p1� , p1� yielding

A�p1� =
1

2

q1

q1�W�p1 + q1,p1� − W�p1 − q1,p1�	

=
p1

2mT


q1

3

vF
��L

h
�3 q1

4wq1

sinh2��vFq1

4
� , �B15�

and

B�p1� =
1

2

q1

q1
2�W�p1 + q1,p1� + W�p1 − q1,p1�	

= 

q1

3

vF
��L

h
�3 q1

4wq1

sinh2��vFq1

4
� , �B16�

where we discarded contributions of order �p1 / pF�2 and
higher. It follows from these two expressions that for a mo-
mentum p1 deep in the band, �p1�� pF, the function B�p1� can
be approximated by a constant B, while A�p1� satisfies

A�p1� =
p1

2mT
B . �B17�

In order to derive an explicit form of the Fokker-Planck
equation, it is therefore sufficient to calculate the constant B.

Let us now briefly comment on the validity of the Fokker-
Planck approximation. The first two terms neglected within
the Fokker-Planck approximation would contribute to the
collision integral as �p1

3 �C�p1�gp1
� and �p1

4 �D�p1�gp1
�, where

C�p1�=
q1
q1

3Wq1
�p1� and D�p1�=
q1

q1
4Wq1

�p1�. Going
through the same derivation as the one outlined above, and
keeping in mind that every new power of q results in a factor
of T /vF, one can convince oneself that C�p1�� � T

vF
�2A�p1�

and D�p1�� � T
vF

�2B. It results that the contribution to the col-
lision integral from the terms in C�p1� and D�p1� are smaller
than the ones from A�p1� and B�p1� by a factor T /��1. This
readily generalizes to higher-order derivatives �p

n, thus vali-
dating the expansion of the collision integral used here.

3. Evaluation of B

We now derive the expression for the constant B using the
specific form of the electron-electron interaction potential of

Eq. �A5�. This expression of the potential is largest for small
wave vectors q allowing to discard the exchange terms
�V�q��kF

�� �V�q��kF
� in the scattering rate, which is thus domi-

nated by the direct term. Following Ref. 27, the reduced
scattering rate wq takes the form

wq =
2�

�
�Vq/2�Vq − Vq/2�

2�L2�
�2

. �B18�

Expanding for small values of q, this can be further rewritten
as

wq =
9�2

16h

1

�kF�L�4

�V0kF�4

�2 � q

q0
�4

, �B19�

where V0 is the zero-momentum Fourier component of the
potential. Substituting this expression back into Eq. �B16�,
and performing the integral over q1, we finally find for the
constant B

B =
9�5

20
�V0kF

�
�4� kF

q0
�4� T

�
�9

kFpF� , �B20�

from which we can extract the length scales l1, leee, l0, and leq
using Eqs. �14�, �24�, �32�, and �59�, respectively,

l1
−1 =

9�9/2

40
�V0kF

�
�4� kF

q0
�4� T

�
�15/2

kF, �B21�

leee
−1 � �V0kF

�
�4� kF

q0
�4� T

�
�7

kF, �B22�

l0
−1 � �V0kF

�
�4� kF

q0
�4� T

�
�6

kF, �B23�

leq
−1 =

27�5/2

10
�V0kF

�
�4� kF

q0
�4� T

�
�11/2

kFe−�/T. �B24�

The expression for B is model specific, and the result of Eq.
�B20� was obtained for the potential Vq of Eq. �A5�, leading
to the same expression for leee as the one of Lunde et al.,27

Eq. �11�. In the case of the screened Coulomb potential dis-
cussed in Appendix A and for temperatures T��vF /d, one
obtains similar results upon redefining q0 according to Eq.
�A6�. On the other hand, for temperatures T��vF /d, the
effect of the screening gate can be neglected, and the
electron-electron interaction is then well described by an un-
screened Coulomb potential, of the form Vq= 2e2

� ln�1 / �q�w� at
small wave vectors �q��w−1. This in turn leads to the fol-
lowing value of B

B =
8� ln2 2

5
� e2

�

kF

�
�4� T

�
�5

ln2��vF

Tw
�kFpF� �B25�

and the corresponding expressions for the length scales

l1
−1 =

4�� ln2 2

5
� e2

�

kF

�
�4� T

�
�7/2

ln2��vF

Tw
�kF, �B26�

leee
−1 � � e2

�

kF

�
�4� T

�
�3

ln2��vF

Tw
�kF, �B27�
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l0
−1 � � e2

�

kF

�
�4� T

�
�2

ln2��vF

Tw
�kF, �B28�

leq
−1 =

48 ln2 2

5�3/2 � e2

�

kF

�
�4� T

�
�3/2

ln2��vF

Tw
�kFe−�/T.

�B29�

Substituting expression �A2� for V0, and Eq. �A6� for q0
into Eq. �B20�, one readily recovers that Eqs. �B20�–�B24�
match with Eqs. �B25�–�B29� at the crossover temperature
T��vF /d.

APPENDIX C: POSITION DEPENDENCE
OF THE DISTRIBUTION FUNCTION

In this appendix we determine the profile of the position-
dependent parameters �R/L�x� and T�x� entering distribution
function �35�.

As discussed in the text, steady-state parameters u and ��
are constant along the wire. Therefore, the spatial profile of
distribution �35� is determined by space dependencies of the
average chemical potential and temperature. It is convenient
to measure deviations from the lead values,

�R�x� = �l + 
�R�x� ,

T�x� = T + 
��x� , �C1�

and �L�x�=�R�x�−��. Let us then consider a wire of length
L� l1, and focus on a small segment between the positions x
and x+�x, where 0�x�L. We observe that conservation of
momentum insures homogeneity of the momentum current

jP = jP
0 +

hn

2
�eV + 
�R + 
�L� +

�2

3

T

�
pF
� , �C2�

where jP
0 is the momentum current in absence of external

potential bias. From Eq. �C2� one readily observes that for jP
to remain constant, a drop in chemical potentials must be
compensated for by an increase in temperature,


��x + �x� − 
��x�

�R�x + �x� − 
�R�x�

= −
6

�2

�

T
, �C3�

valid up to small corrections in �T /��2. To calculate the spa-
tial profile of �R and T we need to find the slope of either
one and their boundary values near the leads.

The slope of �R is readily found from calculating the
difference in right-moving particle currents within the seg-
ment of length �x,

jR�x + �x� − jR�x� =
2

h
�
�R�x + �x� − 
�R�x�� . �C4�

Since this difference equals the rate of change of the number
of right-moving electrons within the segment �x ,x+�x�, we
can insert Eq. �55� into the left-hand side, to find


�R�x + �x� − 
�R�x� =
hṅR

2
�x , �C5�

where ṅR= ṄR /L. Then, from Eq. �55�

d�R�x�
dx

= −
�2

12
� T

�
�2 eV

L + leq
, �C6�

i.e., the chemical potentials linearly decrease, while the tem-
perature linearly increases along the wire,

�R�x� = �R�0� −
�2

12
� T

�
�2 eVx

L + leq
, �C7�

�L�x� = �L�L� +
�2

12
� T

�
�2eV�L − x�

L + leq
, �C8�

T�x� = T�0� +
T

2�

eVx

L + leq
. �C9�

In the linear-response regime boundary values �R�0� and
�L�L� deviate from the chemical potentials in the leads by an
amount proportional to the applied voltage. From inversion
symmetry it further follows that these deviations are opposite
in sign, i.e.,

�R�0� = �l − �eV , �C10�

�L�L� = �r + �eV . �C11�

The parameter � may be inferred from the equation

�R�0� − �L�L� = �R�0� − �R�L� − �� , �C12�

by inserting Eqs. �C10� and �C11� into the left-hand side and
rewriting the right-hand side using Eqs. �C6�, �57�, and �60�.
This results in

� =
hnu

4
, �C13�

where n is the electron density.
The boundary values T�0� and T�L�, are found in a similar

way by combining Eq. �C9� with the observation that 
��0�
=−
��L�, which is, again, a consequence of inversion sym-
metry. We summarize the values for the position-dependent
parameters close to the leads in terms of eV and u

�R�0� = � + eV −
hnu

4
, �L�L� = � +

hnu

4
,

T�0� = T�1 −
u

vF
�, T�L� = T�1 +

u

vF
� , �C14�

where vF=�2� /m.
Finally, restricting ourselves to linear terms in V and

finite-temperature corrections to leading order in �T /��2, we
observe that the values given in �Eq. �C14�	 guarantee that
all moments �vpps�, with s�N, are continuous at the bound-
ary between the wire and the leads; i.e.,


0

	 dp

h
vpps�fp�0� − fp

�0�	 = 0, �C15�
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−	

0 dp

h
vpps�fp�L� − fp

�0�	 = 0, �C16�

where fp
�0� is lead distribution function �1�. For s=0, 1, and 2,

relations �C15� and �C16� imply continuity of particle, mo-
mentum and energy currents at the boundary between wire
and leads.

To show the validity of Eqs. �C15� and �C16� we express
distribution function �35� in terms of 
�R,L and 
�, and ex-
pand the difference of distributions entering Eqs. �C15� and
�C16� to linear order in these parameters. For right-moving
electrons close to the left lead, one has

fp�0� − fp
�0� = − �
�R�0� + up + ��p − ��


��0�
T

�dfp
�0�

d�
,

�C17�

and similarly for left movers close to the right lead. Upon
introducing the new variables �= p2 /2m−� and z=� /T, and
neglecting exponentially small contributions �e−�/T this re-
sults in


0

	 dp

h
vpps�fp�0� − fp

�0�	

= −
�2m��s/2

h


−	

	

dz�1 +
zT

�
�s/2

��
�R�0� + u�2m��1 +
zT

�
+ 
��0�z� f0��z� ,

�C18�

where f0�z�= �1+ez�−1. Keeping now only terms up to qua-
dratic order in �T /�� one then finds


0

	 dp

h
vpps�fp�0� − fp

�0�	

=
�2m��s/2

h
�
�R�0��1 + s�s − 2�

�2T2

24�2�
+ u�2m��1 + �s2 − 1�

�2T2

24�2� + 
��0�s
�2T

6�
� .

�C19�

Substituting values for 
�R�0� and 
��0� from Eq. �C14�,
one can readily check that Eq. �C15� is satisfied for all values
of s�N. Proceeding in an analogous way at the right end of
the wire confirms Eq. �C16�.

APPENDIX D: ENERGY TRANSFERRED
IN A BACKSCATTERING PROCESS

In this appendix we calculate the change in right movers’
energy associated with the backscattering of a right-moving
electron. Let us focus on a small segment of wire in between
positions x and x+�x. Following Eq. �39�, we use the con-
servation of the number of particles to express the rate of

change in the number of right movers ṄR in terms of particle
currents. Proceeding similarly with the energy currents, one

can express the ratio ĖR / ṄR as

ĖR

ṄR
=

jE
R�x + �x� − jE

R�x�
jR�x + �x� − jR�x�

= � +
�2T

3


��x + �x� − 
��x�

�R�x + �x� − 
�R�x�

,

�D1�

where we used distribution function �35� to calculate the cur-
rent differences in terms of 
� and 
�R. The first contribu-
tion � is the energy carried by the electron making its tran-
sition from the subsystem of right- to that of left movers. The
second contribution represents the energy of excitations cre-
ated at the right Fermi point during the sequence of three-
particle scattering processes that ultimately results in the
backscattering of a right mover. This contribution can also be
viewed as the heat transferred from the right-moving sub-
system for each backscattering process, in which case, the
prefactor �2T /3 is readily obtained from thermal conduc-
tance �67� and relation �C4� between right movers’ current
and chemical potential.

Substituting the ratio of changes in temperature and
chemical potential as given by Eq. �C3� into Eq. �D1�, one
has

ĖR

ṄR
= − ��1 + O� T

�
�2� , �D2�

where the term in O�T /��2 is discarded in the text, as it only
leads to subleading corrections to the conductance. We also
briefly mention that Eq. �D2� was derived for a quadratic
dispersion, but can be generalized to the case �p� �p�s, yield-
ing

ĖR

ṄR
= �1 − s�� , �D3�

again, up to subleading corrections in T /�.
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