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Equilibration of a one-dimensional system of interacting electrons requires processes that change the

numbers of left- and right-moving particles. At low temperatures such processes are strongly suppressed,

resulting in slow relaxation towards equilibrium. We study this phenomenon in the case of spinless

electrons with strong long-range repulsion, when the electrons form a one-dimensional Wigner crystal.

We find the relaxation rate by accounting for the umklapp scattering of phonons in the crystal. For the

integrable model of particles with inverse-square repulsion, the relaxation rate vanishes.

DOI: 10.1103/PhysRevLett.105.046401 PACS numbers: 71.10.Pm

The low energy properties of systems of interacting
fermions in one dimension are commonly described in
the framework of the Luttinger liquid theory [1,2]. This
theory successfully predicted a number of interesting prop-
erties of one-dimensional electron systems, such as the
power-law renormalization of the tunneling density of
states and impurity potential [3,4]. On the other hand,
much recent interest in interacting one-dimensional
Fermi systems was focused on the phenomena not captured
by the Luttinger liquid theory [5–8]. One example involves
equilibration of a moving one-dimensional electron liquid,
which was recently shown to affect the conductance of
quantum wires [9] and drag between two wires [10].

In the case of weakly interacting one-dimensional elec-
trons the physical mechanism of equilibration was dis-
cussed in Ref. [11]. At low temperature T excitations of
the system are particle-hole pairs near the two Fermi
points, with the typical energy T � EF and momentum
T=vF � pF. (Here EF, vF, and pF are the Fermi energy,
velocity, and momentum of the system.) In this regime,
backscattering of a right-moving electron near the Fermi
level requires transfer of momentum 2pF to a large number
of particle-hole pairs. The most efficient process of this
type consists of a sequence of scattering events, in which a
hole passes from the left to the right Fermi point through
the bottom of the band. Such processes are suppressed as

e�EF=T and, consequently, equilibration of the chemical
potentials of the right- and left-moving electrons is a
very slow process.

Equilibration of one-dimensional fermions beyond the
weak interaction regime is a more challenging problem. In
this case the description in terms of particles and holes is
no longer applicable, and according to the Luttinger liquid
theory the elementary excitations of the system are bosons.
On the other hand, the Luttinger liquid theory does not
adequately describe particles near the bottom of the band,
and is therefore incapable of describing the equilibration
processes. In this Letter we show that this difficulty can be
overcome in the limit of strong long-range interactions.

Specifically, we consider a system of spinless electrons
of mass m described by the Hamiltonian

H ¼ X
l

p2
l

2m
þ 1

2

X
l;l0
Vðxl � xl0 Þ: (1)

Here xl and pl are the coordinate and momentum of the lth
particle, and VðxÞ is the interaction potential. If the inter-
action is very strong at the average interparticle distance a,
the electrons form a periodic chain. In the case of Coulomb
repulsion, VðxÞ ¼ e2=jxj, such an arrangement is com-
monly referred to as the Wigner crystal.
At strong but finite repulsion, the particles can deviate

from their respective lattice sites, xl ¼ laþ ul, but the
relative change of interparticle distance remains small,
jul � ul0 j � jl� l0ja. To leading order in the deviations
ul the Hamiltonian (1) takes the form

H0 ¼
X
l

p2
l

2m
þ 1

4

X
l;l0
Vð2Þ
l�l0 ðul � ul0 Þ2; (2)

where we used the following notation for the rth derivative
of the interaction potential:

VðrÞ
l ¼ drVðxÞ

dxr

��������x¼la
: (3)

Elementary excitations of the harmonic chain (2) are pho-
nons characterized by quasimomentum q (i.e., ul / eiql).
Their frequencies are easily found by solving the classical
equations of motion,

!2
q ¼ 2

m

X1
l¼1

Vð2Þ
l ½1� cosðqlÞ�: (4)

In agreement with the Luttinger liquid theory, the phonon
excitations are bosons, and at small q their spectrum is
linear, !q ¼ sjqj [provided that VðxÞ falls off faster than
1=jxj at x ! 1]. The applicability of the Luttinger liquid
theory to the low energy properties of a one-dimensional
Wigner crystal is well established [12]. The Wigner crystal
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is an extreme limit of a Luttinger liquid with the parameter
K ¼ �@=ma2s � 1, see, e.g., [8].

Importantly, in the limit of strong interactions the har-
monic approximation (2) provides the full spectrum of
elementary excitations (4), not limited by the restriction
jqj � 1 imposed in the Luttinger liquid theory. Another
advantage of the Wigner crystal model is that the weak
interaction of phonons is naturally described by the anhar-
monic terms in the expansion of the Hamiltonian (1) in the
powers of the displacements ul. Scattering of phonons
caused by these interactions leads to relaxation of their
distribution function to equilibrium.

At temperatures T much lower than the Debye energy
@!�, the quasimomenta of thermally excited phonons are
small, q � 1. For such phonons the umklapp scattering is
impossible, and phonon-phonon collisions conserve the
total quasimomentum Q of the system. As a result, the
equilibrium distribution of the phonons

Nq ¼ 1

e@ð!q�uqÞ=T � 1
(5)

is characterized by two parameters: the temperature T and
the velocity u of the phonon gas with respect to the lattice
(see, e.g., Ref. [13]).

It is important to note that while being a good approxi-
mation, conservation of quasimomentum is not exact.
Indeed, even at low temperatures there is a finite occupa-

tion N� � e�@!�=T of phonon states near the edge q ¼ �
of the Brillouin zone, which leads to a nonvanishing
probability of umklapp processes. As a result, the total
quasimomentum of the phonons relaxes as _Q ¼ �Q=�

with the time constant � / e@!�=T . For the distribution
(5) one has Q / u, and thus the velocity u acquires a
time dependence, _u ¼ �u=�. Calculation of the relaxation
time � is our main goal.

The microscopic mechanism of umklapp scattering is
illustrated in Fig. 1. We assume that the phonon spectrum is
concave, which is the case for Coulomb repulsion. Then

the dominant process involves scattering of a rare phonon
with quasimomentum q1 near the boundary of the Brillouin
zone by an acoustic phonon with energy @!q2 � T. As a

result of such a collision the quasimomentum of the high-
energy phonon changes by �q1 � T=@s. If the new quasi-
momentum q01 ¼ q1 þ �q1 is outside the Brillouin zone
(��, �), the scattering involves umklapp, and the total
quasimomentum changes by �2�.
In the course of such scattering events the number of the

rare phonons near the edge of the Brillouin zone is con-
served, while their momentum changes by a small amount
�q � �. Thus these phonons essentially diffuse in the
momentum space, and the evolution of their distribution
function Pðq; tÞ can be described by the Fokker-Planck
equation

@tP ¼ �@qJ; J ¼ AðqÞPðq; tÞ � 1
2@q½BðqÞPðq; tÞ�:

(6)

Here J has the meaning of the probability current in
momentum space, and the functions AðqÞ and BðqÞ can
be expressed in terms of the rate Wq;qþ�q of phonon

transitions from state q to state qþ �q as

AðqÞ ¼ X
�q

�qWq;qþ�q; BðqÞ ¼ X
�q

ð�qÞ2Wq;qþ�q:

(7)

Below we will be using the Fokker-Planck equation (6) to
determine the behavior of the phonon distribution function
P in the vicinity of q ¼ �. This enables us to approximate
BðqÞ by B ¼ Bð�Þ. Furthermore, we will be interested in
the case of weak deviation from equilibrium, when the
velocity of the phonon system is small, u � s. Thus we
can approximate AðqÞ by its value at equilibrium, when the

Boltzmann distribution PðqÞ ¼ e�@!q=T has to satisfy the
Fokker-Planck equation by nullifying the probability cur-
rent J. Then, from (6) we find AðqÞ ¼ �B@!0

q=2T, where

!0
q ¼ d!q=dq.

The phonon distribution function PðqÞ is 2� periodic. In
the first Brillouin zone and away from its edges q ¼ �� it
is given by Eq. (5). A periodic continuation of (5) yields a
discontinuity at q ¼ �. Specifically, the phonon distribu-
tion function away from q ¼ � takes the form

PðqÞ ¼ e�@!q=Te��@u=T;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
T

@j!00
�j

s
� �ðq� �Þ � �:

(8)

We now solve the Fokker-Planck equation (6) with the
boundary conditions (8) to determine the steady-state pho-

non distribution PðqÞ at jq� �j & ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T=@j!00

�j
p

. The solu-
tion is rather straightforward and analogous to that for the
distribution function of holes near the bottom of the con-
duction band of weakly interacting electrons [11]. It inter-
polates smoothly between the Boltzmann functions (8) and
corresponds to a finite but exponentially small probability

FIG. 1 (color online). Umklapp scattering of two right-moving
phonons (filled circles) into two left-moving phonons (open
circles). The energies of the initial and final states are equal
(see the dashed circle). On the other hand, the sum of the
quasimomenta defined to range in the first Brillouin zone ��<
q < �, decreases by 2�.

PRL 105, 046401 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
23 JULY 2010

046401-2



current

J ¼ uB

�
�@3j!00

�j
2T3

�
1=2

e�@!�=T: (9)

The nonvanishing value of J means that in unit time
ðN=2�ÞJ phonons increase their momentum and leave
the first Brillouin zone through point q ¼ �. (Here N is
the total number of electrons in the Wigner crystal.) Each
such event is an umklapp process resulting in the decrease
of the quasimomentumQ of the phonon system by 2�. We
therefore conclude that at u � 0 the phonon scattering
events result in _Q¼�NJ. Comparing this result with the
total quasimomentum of the phonons Q ¼ �NuT2=3@2s3,
easily computed using the distribution (5), we find the
relaxation rate ��1 ¼ � _Q=Q in the form

��1 ¼ 3B

�
@s

T

�
3
�
@j!00

�j
2�T

�
1=2

e�@!�=T: (10)

As expected, the relaxation rate shows activated tempera-
ture dependence, with the activation temperature given by
the Debye energy of the phonons @!�. However, to fully
determine the temperature dependence of the prefactor,
one has to calculate the diffusion coefficient B of phonons
in momentum space.

It is convenient to treat the scattering of phonons using
the second quantization of the Hamiltonian (1) whereby
the displacements and momenta of the particles are ex-
pressed in terms of the phonon destruction and creation

operators bq and byq as

ul ¼
X
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@

2mN!q

s
ðbq þ by�qÞeiql; (11)

pl ¼ �i
X
q

ffiffiffiffiffiffiffiffiffiffiffiffiffi
@m!q

2N

s
ðbq � by�qÞeiql: (12)

The quadratic Hamiltonian (2) then takes the standard form

H0 ¼
X
q

@!qðbyqbq þ 1=2Þ: (13)

The coupling of phonons is described by the anharmonic
corrections to H0, which are easily obtained by expanding
the full Hamiltonian (1) to higher orders in the displace-
ments ul. To find the leading contribution to phonon scat-
tering, we will need to account only for the cubic and

quartic anharmonisms, H � H0 þUð3Þ þUð4Þ, with the
respective perturbations taking the forms

Uð3Þ ¼ �i

3
ffiffiffiffi
N

p
�
@

2m

�
3=2 X

q1;q2

f3ðq1; q2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!q1!q2!q1þq2

p ðbq1 þ by�q1Þ

� ðbq2 þ by�q2Þðb�q1�q2 þ byq1þq2
Þ; (14)

Uð4Þ ¼ @
2

48m2N

X
q1;q2;q3

f4ðq1; q2; q3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!q1!q2!q3!q1þq2þq3

p ðbq1 þ by�q1Þ

� ðbq2 þ by�q2Þðbq3 þ by�q3Þ
� ðb�q1�q2�q3 þ byq1þq2þq3

Þ: (15)

Here the functions f3 and f4 are defined as

f3ðq1;q2Þ¼
X1
l¼1

Vð3Þ
l fsin½ðq1þq2Þl��sinðq1lÞ�sinðq2lÞg;

(16)

and

f4ðq1; q2; q3Þ ¼
X1
l¼1

Vð4Þ
l f1� cosðq1lÞ � cosðq2lÞ

� cosðq3lÞ � cos½ðq1 þ q2 þ q3Þl�
þ cos½ðq1 þ q2Þl� þ cos½ðq1 þ q3Þl�
þ cos½ðq2 þ q3Þl�g: (17)

The rate of two-phonon scattering processes shown in
Fig. 1, in which a phonon q1 moves to the state q01, is given
by the golden rule expression

Wq1;q
0
1
¼ 2�

@
2

X
q2;q

0
2

jtq1;q2!q0
1
;q0

2
j2Nq2ðNq0

2
þ 1Þ�q1þq2;q

0
1
þq0

2

� �ð!q1 þ!q2 �!q0
1
�!q0

2
Þ: (18)

The scattering of two phonons q1 and q2 into q
0
1 and q

0
2, can

be accomplished in the first order in the quartic anharmon-

ism Uð4Þ. Alternatively, the same scattering process can be

realized in second order in the cubic anharmonism Uð3Þ.
Simple power counting shows that in both cases the result-
ing amplitude is proportional to @2; i.e., one has to account
for both contributions. The actual calculation is straight-
forward and results in the transition matrix element in the
form

tq1;q2!q0
1
;q0

2
¼ @

2

m3N

�

ð!q1!q2!q0
1
!q0

2
Þ1=2 ; (19)

where

�¼� f3ðq1;q2Þf3ðq01;q02Þ
!2

q1þq2
�ð!q1 þ!q2Þ2

þf3ðq2;�q01Þf3ðq1;�q02Þ
!2

q2�q0
1
�ð!q2 �!q0

1
Þ2

þf3ðq1;�q01Þf3ðq2;�q02Þ
!2

q2�q0
2
�ð!q2 �!q0

2
Þ2 þ

m

2
f4ðq1;q2;�q01Þ: (20)

To find the diffusion constant Bðq1Þ of phonons in
momentum space, one notes that the momentum q2 is
limited by the occupation numberNq2 in Eq. (18), resulting

in jq2j � jq02j � T=@s � �. Thus one can expand � in
powers of �q ¼ q01 � q1 ¼ q2 � q02. The expansion starts
with a quadratic term, � / ð�qÞ2. The proportionality
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constant depends on the specific model of the interaction
potential VðxÞ. In the most interesting case of Coulomb
potential VðxÞ ¼ e2=jxj our treatment is complicated by
the fact that the phonon speed s diverges logarithmically.
In practice, however, the Coulomb potential is always
screened at large distances by remote gates. In this case,
� can be found analytically. For simplicity, we also limit
ourselves to the most important case of q1 ¼ � and find

� ¼ 21�ð3Þ
32

me2

a5
ð�qÞ2; (21)

where �ðxÞ is the Riemann’s zeta function. Combining this
result with Eqs. (7), (18), and (19), we find

B ¼ �T5; � ¼ 21�3�ð3Þ
20

e2

@
3m3a7s8

: (22)

One can now substitute this result into Eq. (10) to obtain
the full expression for the relaxation rate of the phonon
system in a Wigner crystal. In the specific case of Coulomb

interaction, the Debye frequency !� ¼ ½7�ð3Þe2=ma3�1=2,
parameter !00

� ¼ �2 ln2½e2=7�ð3Þma3�1=2, and the speed

of phonons is s ¼ ½2e2 lnðd=aÞ=ma3�1=2, where d is the
distance to the gate.

Although the expression (22) is derived for Coulomb
interaction, the temperature dependence B / T5 is valid for
any long-range repulsive potential. An interesting excep-
tion is the case of strong inverse-square repulsion, VðxÞ ¼
�=x2, with � 	 @

2=m. This form of repulsive potential
corresponds to the Calogero-Sutherland model, which is
exactly solvable due to the presence of an infinite number
of integrals of motion. As a result, one expects that scat-
tering of excitations preserves their momenta, and no
diffusion in momentum space should be possible. Indeed,
we have been able to show that the coefficient � in Eq. (22)
vanishes for inverse-square repulsion. We have also veri-
fied that the expression (20) for �, and thus the phonon
scattering amplitude (19), vanish in this case. Scattering of
a massive particle off an acoustic phonon, Fig. 1, was
recently discussed in the context of quantum decay of
dark solitons in one-dimensional Bose systems [14]. In
analogy with our observation, their decay rate vanishes in
the integrable (Lieb-Liniger) case.

The expression (10) for the relaxation rate of phonon
system in a one-dimensional Wigner crystal with the dif-
fusion constant (22) is the main result of this Letter. To
illustrate its significance we now briefly discuss the effect
of the phonon relaxation upon the conductance of a
strongly-interacting quantum wire. A more rigorous treat-
ment will be presented elsewhere.

The equilibration of phonons in a one-dimensional
Wigner crystal is analogous to electron equilibration in
the limit of weak interactions. In the latter case, the ex-
citations are holes (particles) created by transferring elec-
trons to (from) a Fermi point. The momentum of each
excitation is thus measured from the nearest Fermi point.

Equilibration processes include backscattering of holes
near the bottom of the band. Since the momenta of right-
and left-moving holes are measured from different Fermi
points, each backscattering event changes the momentum
of the excitations by 2pF ¼ 2�=a, in analogy with the
quasimomentum change �Q ¼ 2� when a phonon in a
Wigner crystal crosses the edge of the Brillouin zone. We
thus conclude that _Q can be interpreted as the rate of
backscattering of right-moving electrons, _NR ¼ � _Q=2�.
This relation provides for a way to observe the phonon

equilibration by measuring conductance of a strongly in-
teracting wire connected to noninteracting leads. The nega-
tive value of _NR means that some of the right-moving
electrons entering the wire from the left return to the
same lead, thereby reducing the conductance [6,9,11].
Adapting the calculation of Ref. [11] to the case strong
interactions, one finds

G ¼ e2

h

�
1� L

B

a

�
@
3j!00

�j
8�T3

�
1=2

e�@!�=T

�
: (23)

Although the correction to the conductance is exponen-
tially small, it grows with the length of the wire L. When L

exceeds a length scale leq / e@!�=T , we expect the correc-

tion to saturate at a value �G / ðT=@!�Þ2, in analogy with
the weakly interacting case [9,11].
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