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Electron tunneling in transverse magnetic fields is studied with regard to multiple-subbarrier scatter-
ing by phonons. It is shown that the electron-phonon interaction facilitates tunneling considerably be-
cause of the shift of the magnetic-oscillator center upon scattering. This involves, in particular, a
strong temperature dependence of the tunnel-junction conductance in magnetic fields parallel to the
dielectric-interlayer plane. These effects may show up in the hopping conductivity in a magnetic field.

Electron tunneling is known to be strongly suppressed
by a transverse magnetic field. In particular, in the pres-
ence of a field H directed along the z axis the asymptotic
behavior exp(—r/a) of the wave function of the ground
state of an impurity-bound electron is substituted by

v(p,z) xexp

ol _ o
“e T ®

where A=(ch/eH)'? is the magnetic length and p
=(x,y). Such a change in the asymptotic behavior of the
wave function may be accounted for by the occurrence of
an additional potential barrier #%p?/8mA* called a mag-
netic barrier.! In Refs. 2-4 it has been shown that if the
electron is scattered by impurities (or the crystal bound-
ary) in the course of tunneling, the influence of the mag-
netic field on tunneling is considerably moderated: the
asymptotic behavior of the wave function takes the form

yxexp(—p/b), )

where b is the characteristic length dependent on H and
on the scattering intensity. This result may be interpreted
in the following way. In each scattering act the electron
transfers a momentum to the impurity in the direction
perpendicular to that of tunneling, shifting the center of
the magnetic oscillator in the tunneling direction. With
further movement the magnetic barrier is centered on the
scattering point. As a result, upon multiple scattering the
magnetic barrier ceases to increase monotonically with in-
creasing p, which leads to dependence (2).

The present work is concerned with the case when sub-
barrier scattering on impurities may be neglected and the
oscillator center is shifted due to transfer of momentum
to phonons. Unlike scattering on static defects,?™* the
transfer of momentum to phonons is inevitably accom-
panied by energy transfer. Therefore, the effects in ques-
tion prove to be important in the cases when the processes
of inelastic electron tunneling are prevailing, for instance,
in hopping conductivity in semiconductors' or in tunnel
junction conductivity at not too low temperatures.

For definiteness, let us consider a tunnel junction in a
magnetic field parallel to the dielectric-interlayer plane
(see Fig. 1). In contrast to Ref. 3, it is assumed that the
interlayer is free from impurities. On the contrary, the
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leads are assumed to comprise high concentrations of im-
purities so that the Landau quantization in them may be
neglected. We consider the case of A <d when the tunnel-
ing conductivity of the junction is substantially suppressed
by the magnetic field (d is interlayer thickness). The tem-
perature dependence of linear conductance will be calcu-
lated. It will be shown that the processes of emission and
absorption of phonons are initiated at some threshold tem-
perature, which leads to a decrease of the effective mag-
netic barrier and, hence, an exponential increase of con-
ductance with temperature.

We will calculate the conductance in the linear regime
V K T/e by the formula

2
e
G=—T"§’Wkpnk(l—np). 3)

Here indices £ and p number the states in the left and
right junction leads, respectively, n; and n, are the Fermi
filling functions of the states in the leads; Wi, is the prob-
ability of tunneling from state k to state p per unit time.
We can obtain formula (3) proceeding from the expres-
sion for the current

I=ekZ[Wk,,nk(1 —np) —Wun,(1 —m)]1,
P

where ny =ng(Ey —eV), n, =np(E,). Then, using the re-
lation between the probabilities of forward and backward
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FIG. 1. Tunneling geometry.
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transition,

Ex—FE,
T ’

for the quantity G =dI/dV|y—o, we obtain expression (3).
The probability Wy, may be written as

kp ="§) Wiy ="2_:0a2"w,§;:> : @

Wip =Wpk €xp [

Series (4) is an expansion in terms of the constant a of the
electron phonon interaction (@<1). Further probabili-
ties Wk,, will be calculated within exponential accuracy
First, let us discuss the initial term of the series W(9’
which is important within the limit a— 0 or, as we shall
see below, at sufficiently low temperatures. It describes
elastic tunneling of electrons from one lead to the other
and is proportional to the square of the modulus of the
transition-matrix element Tk,, In the absence of impuri-
ties k (or p) may be thought of as the coordinate of the
%nctlc -oscillator center which is conserved and, hence,

=0. Consequently, the presence of impurities in theJ
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leads is essential for current to pass through the junction.
It may be shown that given impurities m the leads, the
dependence of the elastic conductance G © on interlayer
thickness takes the form

G @ =ginexp(—d2/A2)+Bn’exp(—d?/202) . 5)
Here n is the two-dimensional (2D) concentration of im-
purities in the narrow layer of thickness A2/d adjacent to
the barrier, and the explicit form of the coefficients B,,8;
is not important for us. Equation (5) may be understood
in the following way. The first term in (5) describes, for
instance, the electron scattering from the left lead to the
right one on the right-lead impurities. The corresponding
matrix element of the transition is proportional to the
value of the wave function of the electron in the left lead
on the opposite side of the barrier, Tk,, <y (d)
axexp(—d?/20?). The initial term in (5) is proportional
to the square of this quantity. The second term in (5) cor-
responds to electron scattering by a pair of impurities lo-
cated at points r and 7' in different leads. The matrix ele-
ment of this transition

< [arridri vt ol =g Do — ¥, ) < ¥ O, g r,r)

[v(r) is the impurity potentiall appears to be proportional to the Green function g(r,r') < exp(— |r—r'|%/4A2). Further,
we shall assume that the impurity concentration is not exponentially small so that the conductance is determined by the
second term in (5). Thus, as in Ref. 3, the elastic conductance is proportional to the square of the modulus of the Green
function along the shortest way.

This result may be generalized to the case of tunneling with emission or absorption of phonons. Specifically, the ampli-
tude of electron tunneling from point r in the left lead to point r’ in the right lead with absorption of phonons with wave
vectors qy, . . . ,q,» and emission of phonons qj, . ..,q/ is proportional to the matrix element of the operator Green func-
tion

(r;(Ng,—1) - - - (Ng,, —

D,(Ng+1) -+ WNagsNgis - N,y (52)

1
(Nq;+l)|E — 5N, . .. u
k
Here H is the Hamiltonian of the system including the electron-phonon interaction. The matrix element (5a) is calculat-
ed by expanding of the operator 1/(Ex — H) in a power series in the electron-phonon-interaction operator. The expres-

sion for probability (4) so obtained has the form
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2 J

A,ijz /

EMS

r2q; 1 '1220.)2 220 )2
) —W[(x—x +1°0,)*+ (y —y'—2r%0,)%]

Eabs

(Ex —Ep+Eaps— Eem) . (6)

Here the sum over r and r’ is taken over the positions of
impurities in the left and right leads, respectively, m (1)
being the number of absorbed (emitted) phonons, AQ the
full momentum transferred to the phonons,

! m
Q=;q}—§.‘1q,~.
j= i=

The energies E .5 and E., entering in (6) are the total en-
ergies of absorbed and emitted acoustic phonons,

m !
Eabs‘Ehslqil’ Eem=2:lhslq,;|s
i= Jj=

and in (6) it is assumed that all the phonon energies

exceed the temperature. In Eq. (6) it has been taken into
account that phonons with small g, turn out to be most
important in the tunneling process.

In order to make clear the sense of formula (6), consid-
er the term of the sum with m =1, / =0 corresponding to
tunneling with the absorption of one phonon. In this case
the amplitude of electron tunneling from point r to point
r', calculated by using expression (5a), is proportional to
the following quantity:

fd3r1g(r,r1)exp(—-iqlrl)g(rl,r').

The term in question of the sum in (6) is proportional to
the square of the modulus of this quantity. Since the
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terms of the sum in (6) decay quickly with increasing
|r —£'|, we assume that x' —x =d, y'—y =0 (the x axis is
directed along the normal to the interlayer plane). If the
difference E, — E is not very large (E, — Ex < hsd/2)?),
the greatest contribution is made by phonons with wave
vectors directed along the y axis. Hence, for the probabil-
ity Wi} we obtain

X(% (d-.xo)2 ] [ E,—Ey
— — 2" |exp | - 22—

W(])G 2 _
kp S QTCXP | T3 2.2 T

E, —Ex
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The value x is the shift of the magnetic-oscillator center
due to absorption of a phonon with momentum Agq;. Con-
trary to the case of static defects, the momentum exceed-
ing |E, — Ex|/s cannot be transferred to the phonon. Ow-
ing to this, the shift of the oscillator center cannot exceed
X0

E,>Ey, x0=7\.2q|=7\,2 )

Using formulas (3) and (6), we can calculate the con-
ductance to any order in the electron-phonon-interaction
constant to within exponential accuracy. At exponentially
small a the main contribution to the temperature depen-
dence of conductance is made by single-phonon processes
which may be considered with the aid of Eq. (7),

a’exp(—d?/2A2), Ly>d,

d?  (d—Lp)?
a’exp| ——5+——
P 0.2 4).2

G(l)m (8)

, Lr<d.

The length L introduced here is defined by sound velocity
and temperature,

As seen from (8), there exists a threshold temperature
T| = hs/d .

From this temperature on, correction (8) increases ex-
ponentially. As seen from Eq. (7), for T < T, the tunnel-
ing processes with a shift of the oscillator center are
suppressed because of the small probability of finding the
phonon required. At high temperatures 7>> T, when this
probability is not small, the tunneling processes that shift
the oscillator center by the value xo=d/2 are dominant.
As would be expected in this case, G ") ccexp(—d 2/4r2).
As with scattering on impurities, at not too small a the
multiple-phonon contributions to conductance appear to
be exponentially greater than the single-phonon one owing
to more efficient suppression of the magnetic barrier. In
particular, the double-phonon contribution has the form

a*exp(—d?/2A2), L+>2d, 10
G 5 _ ) 10
4 d (d—L¢/2)
Xxp| ——+——""— |, L7 <2d.
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Indeed, at high temperatures (when L7 <d) we have
G xcexp(—d?/61%). Note that the exponential in-
crease in G ®(T) starts from the threshold temperature

hs

T, d an
Therefore, the threshold temperature for the double-
phonon processes is half as much as that for single-phonon
ones. This may be understood in the following way.
Compare the single- and double-phonon processes that in-
volve the same full shift Ax of the oscillator center in the
direction of tunneling and, hence, the same full momen-
tum transferred to phonons. The contribution of the
process with single-phonon absorption contains the
small Boltzmann multiplier exp(—AE/T), where AE
=(hs)Ax/A2, which is related to the small probability of
finding a phonon with the required momentum. (For pho-
non emission the same multiplier occurs because of the
small number of vacant states in the right lead at energy
Er—AE.) For double-phonon processes this multiplier
has the form exp(—AE/2T), since the possibility exists of
transferring one half of the required momentum to the ab-
sorbed phonon and the other half to the emitted phonon.
(For the processes with the absorption of two phonons or
the emission of two phonons, the Boltzmann multiplier is
the same as for the single-phonon processes).

Thus, at realistic values of a the low-temperature be-
havior conductance is determined by the double-phonon
processes rather than single-phonon ones and is described
by formula (10). Further increase in temperature ini-
tiates in succession the processes involving 3,4,5,...,
phonons. When the optimal number of phonons is large,
we found that the temperature dependence of conductance
is defined by the expression

L L}
Gocexp[—% —2%+21n'/2(1/a) +KT2
L
+Trln'/2(1/a)] : (12)

Note that by virtue of multiphonon scattering, the ex-
ponent of (12) is free of the term quadratic in d/A.

In conclusion it should be noted that the mechanism of
multiple-phonon tunneling under consideration may be
important for describing hopping conductivity in a mag-
netic field. As in the case of nonresonant impurity scatter-
ing? phonon scattering leads to the linear dependence of
the exponent of the probability of a single hop on its
length. At sufficiently high temperature, when L7 is
smaller than the mean impurity spacing, hopping conduc-
tivity in a magnetic field is likely to be determined by the
multiple-phonon processes.
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