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Abstract. Electron tunnelling in a transverse magnetic fictd is studied taking into account
the electron-phonon interaction. When scaitered on a phonon, the electron shifis the
oscillator centre in the tunnelling direction, which decreases the field-relaied magnetic
barrier and increases the probabilty of tunnelling considerably. For tunnelling over
large distances, the most effeclive processes involve muliiple scaliering by phonons, An
expression has been found for the resistivity of the Miller-Abrahams network element
for hopping conductivity with regard to magnetic-barrier suppression upon scattering by
phonons. The exponential temperature and voltage dependences of the tunnel junction
conduclance in a magnetic fleld parallel to a dielectric interlayer have been obtained.
The contribution associaied with the tunnelling processes involving scattering by two
phonons to the relaxation of edge-state populations in the quantum Hall effect regime
has been found.

1. Introduction

Investigation of many problems in solid state physics rcquires an understanding of
the process of electron tunneliing in a magnetic field. Among such problems are: the
study of the current flow in a tunnel junction placed in the magnetic field;, hopping
magnetoresistance of semiconductors; and tunnelling between the edge states in the
quantum Hall effect regime. The present paper is concerned with the processes of
single- or multiphonon-assisted electron tunnelling in the direction perpendicular to
the magnetic field. It is shown that scattering by phonons facilitates tunnelling con-
siderably and gives rise to an exponential temperature dependence of the tunnelling
probability.

The influence of the transverse magnetic field on the wavefunction of the impurity-
bound electron’s ground state manifests itself in the change of the asymptotic be-
haviour ¥ x exp{-p/a) to

¥(p) x exp(~p?/4)7) : (1)
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where X = /ch/f|e|H is the magnetic length, and p = (=z,y); the electrons are
assumed to be two-dimensional with the magnetic field H directed along the =z
axis. This fact may be interpreted as the result of the occurrence of an additional
potential barrier, Vj; = i%p? /8m A4, called the magnetic barrier [1]. In contrast to
the conventional potential, V,; is not fixed in space, i.e. if the electron is scattered
with a transfer of momentum hq, then the origin of the magnetic barrier is shifted
within a distance A\%g in the direction [gH]. In the case of multiple scattering with
momentum transfer perpendicular to the tunnelling direction, the magnetic barrier
stops increasing monotonically with increasing p. This leads to the logarithm of the
tunnelling probability depending linearly on distance d:

In W= —dfb @

where b is the characteristic length, which depends on A and the scattering intensity.
This has been shown for the case of scattering by impurities (or the crystal boundary)
[2-4]. In the present paper it is demonstrated that, at not too low temperatures,
the magnetic barrier may be suppressed, even in the absence of impurities due to
scattering by phonons. In contrast to scattering by static defects, the momentum
transfer to the phonon is inevitably accompanied by energy transfer. In particular
this leads to the above-mentioned strong temperature dependence of the tunnelling
probability.

Section 2 considers single- and multiphonon-assisted electron hopping between
two localized states. The probability of such an electron hop has been calculated as
a function of intercentre distance d, level energy difference £, — E; and temperature
(for sufficiently strong magnetic fields, such that the magnetic length X is much less
than d, throughout). If the difference in energy between the initial and final states is
fairly great:

E; = E¢ > hsd/ ) (3)

then acoustic multiphonon-assisted processes involving the shift of the oscillator cen-
tret by the distance d are possible even at zero temperature (s is the sound velocity).
The probability of tunnelling with emission of an arbitrary number of phonons has
the form

IR I N N

Here o is the small dimensionless constant of the electron-phonon interaction. Equa-
tion (4) takes into account the fact that in the n-phonon process the electron cov-
ers distance d/(n + 1) between two sequential acts of phonon emission. Calcula-
tion of summation (4) yields (2) with characteristic length 6 = A/(2 In/%(1/a)).
The total momentum transferred to the emitted phonons cannot exceed the value
Ap = (&, — E;)/s and, hence if condition (3) is not fulfilled, then the total shift
of the oscillator centre, Az = A*Ap/h, appears to be smaller than d (here it is
assumed that E; > E). Therefore, at T = 0 the wnnelling probability appears to be

t Hereafier, instead of the term ‘the origin of the magnetic barrier’, we adopt the more commonly used
term ‘the oscillator centre’,
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exponentially smaller than the value yielded by (4) by parameter (d — Ax)?/A2. Fur-
ther increase of temperature initiates the tunnelling processes accompanied by both
emission and absorption of phonons. Such processes involve transfer of a larger mo-
mentum to the phonon system and, hence, a larger total shift of the oscillator centre
Azt. Thus, the tunnelling probability increases exponentially with temperature.

The expression found in section 2 for the probability of hopping between two
localized states involving an arbitrary number of phonons is used to calculate the
resistivity of an element of the Miller-Abrahams network [1] for two-dimensional
hopping conductivity in a transverse magnetic field. Under certain conditions the
effects related to the shift of the oscillator centre may show up in hopping magne-
toresistance.

In section 3 we investigate the passage of current in the tunnel junction in the
presence of a magnetic ficld parallel to the plane of the dielectric interlayer. The
contact leads are assumed to contain impurities; on the contrary, the interlayer is
assumed to be free of impurities and its thickness d much larger than the magnetic
length A. The dependence of differential conductance on temperature and on the
voltage applied to the contact, G(V, T}, has been found. At T = Oand V = 0, the
conductance is exponentially small, ie. G x exp{—d?/2A?), and determined by the
processes of elastic electron tunnelling. With increasing voltage on the contact (and
at T = 0) the conductance increases exponentially, beginning with the characteristic
value V' ~ V, = hs/ed due 10 initiation of the tunnelling processes with phonon
emission. At V > V* = hsd/e)?, the processes involving a shift of the oscillator
centre, Ax = d, ar¢ allowed (see also (3)) and the conductance is saturated and has
the value

G x exp{~(2d/A) n'*1/a). RS

The increase in temperature at ¥ = 0 also results in an exponential increase of
conductance, but, in contrast to the case for T = 0 and V' # 0, this is due to
the tunnelling processes involving both emission and absorption of phonons. The
temperature dependence of conductance originates at threshold temperature T, =
hs/2d and terminates at T ~ (#s/A)In*/?1/a when the conductance reaches the
value in (5). It is of interest to note that at voltages in the interval V, < V < V* the
conductance G(V, T) exhibits a strong temperature dependence, even at T € eV.

Section 4 considers the possibility of observing the multiphonon-assisted tunneliing
effect in 2D ballistic structures in a magnetic fiekd. In particular, the correction
factor to the quantized Hall resistance value, which is exponentially dependent on
temperature, should be observed due to the phonon-enhanced tunnelling between
the edge states.

2. The probability of a single hop between localized states

The Hamiltonian of the 2D electron in a perpendicular magnetic field in the presence
of two impurity centres takes the form

’Re = (1/2m}(~iAV - (e/c)A) + vi(p =)+ v - py) (6)

T To this end, it is certainly essential that the momenta of the absorbed and emitted phonons are opposite
in direction,
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where p; = (mJ,yJ), the 1mpurmes are described by the small-radius potentials
v,(p) and v,{p); the impurity spacing |p, — p,| = d > A. Let us choose the vector
potential in the Landau gauge: A, = Hx, A, = A, = 0. The wavefunctions of the
states localized on impurities 1,2 may be written as

U, =+ 8wy Uy =y + Loy )
Gy = (@2'”21‘!’1)/( £, - E,)} Gy = {1 |vi s} /(B — Ey) )

where ;, E; are the wavefunction and energy of the electron localized on impurity j
in the absence of the other impurity (j = 1,2); it is assumed that hw, /2— E; < hw,,
where w, = |e|H/mc is the cyclotron freqency. The asymptotics of the wavefunctlon
w; has the form

w;(p) = (1/V2mA?) exp(~|p — p;1*/42%)
x exp{—(i/22)(zy + 2,y —y;=)}  |lp—p;I> X )

When writing the eigenfunctions of the Hamiltonian (6) in the form of (7) and (8),
B, and 8, were assumed to be small. This condition is fulfilled at sufficiently large
values of d since, as seen from (9), the values of )35 are exponentially small:

B; o exp(~d®/4)?). (10}

Given the electron-phonon interaction, there are transitions between states ¥, and
¥, with emission or absorption of phonons. If we assume that electrons interact
only with acoustic phonons, and the electron-phonon interaction is described by the
deformation potential, then:

He_ph =-iAZ ﬁq/‘lvopos(exp(iq~r)bq—.ex'p-(—'iq-r)b;'). (11)
q

Here » = (p,z), A is the deformation potential constant, b, is the annihilation
operator of the phonon with wavevector g, s is the velocity of the longitudinal sound,

o is the material density and V; is the sample volume. The probability of electron
transition from state ¥, to state W, with absorption of m phonons and emission of
{ phonons may be written as

{ 27
wiml = 21 = ¥ KW (Ng = 1) (N, =1}, (N 4+ 1),

{ahie'}
NG+ TN Ny NG NP
X tlj(E"l_i'EQ'{' Eabs_Eem)' (12)

Here N, is the filling number of phonon state ¢, and E,, and E,, are the tota]
energies of absorbed and emitted phonons:

!

abs Z:'ﬁsltL Z 1S|q‘;
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The summation in (12) is made over all the possible values of the wavevectors of
absorbed phonons g,,...,q,, and emitted phonons qj,...,q}. Scattering operator
T may be represented as a standard series of the perturbation theory with respect to
the operator of the electron—-phonon interaction (11):

T=Hepp+ Heppm—5——Heepn + - - (13)
Hon = hslglbb,. (14)
q

The first term of series (13) corresponds to single-phonon-assisted tunnelling. Pro-
cesses either with absorption or emission of a phonon are allowed depending on the
relationship between E; and E,. For instance, in the case of E; > E, we have

nA? (E, - E,)
Vopos fis

Wity = [N(E, - E,) + 1]

b
&

Sty (r,y)de dy | §(E, ~ B, - hsq') (15)

where N(E) is the equilibrium Planck phonon distribution function. Substitution of
functions (7) into (15) yieilds two types of integrals, namely,

Jy = /d:’p w3 exp(—iq' p)w; Jy = 35 /cl'"’p @] exp(—ig'p)w

In contrast to the case X = 0 when J, »» J, {1], calculations in the limit A < d
yield J; > J,. As a result, for the probability of hopping we find from (15)

WI(?,’;J = AN N+ D)z} /anhpys® iy /d(d - 2z,)

x exp{—(x3/227) — (d — z,)?/27%} (16)
2y = A(E) - Ey) /hs

Quantity z, represents the shift of the oscillator centre upon emission of a phonon
with energy E,~ E,. Equation (16) is valid at z, > A%/d, d—2z; > A, therewith the
momentum of the emitted phonon is directed almost perpendicular to the direction
of tunnelling. Probability Wl_‘.,) increases exponentially with increasing F, — E,
owing to the increase in the shift of the oscillator centre x, on phonon emission. The
probability of the reverse transition, ¥ .,_,[;), is obtained from (16) by substitution of
(N+1)for N,

Let us show that under certain conditions multiphonon-assisted processes make
an exponentially larger contribution to the tunnelling probability than smg!e-phonon
processes (see (16)). For instance, two-phonon contributions Wf_‘,g} and Wl_,2
determined by the second term of series (13) take the form
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0,2 VT Az
Wi(-z} = y

(B, - B sampa s Jdld -z (d—F2)

2 (d—x,)?
8 exp{—-4;2 EESY: } 17
(L1} ., Atd? 1 ..
172 T 162(2x )32 pEs3 LS (B, - M2 R
2 | (d- &) g, .
xexp{_iﬁ+_:sxz_+§ﬁ(LT__2n) (18)

where Ly = hs/T. Equation (17) is valid at z, » A2/d, (2/3)d — 25 > A
Equation (18) is valid to an exponential accuracy at z, < Ly < 2d — 3z; the pre-
exponential in (18) depends in a complex way on z,, L, and d, the form presented
above being valid within the limit 2y € Ly € d.

] Lix)
Jo .2 2
gmug be-xg)
%mwﬁxz
Figure L Effective magnetic barrier for tunneiling with
[ the emission of one phonon (solid line). In transition

ic two-phonon processés the barrier is changed in the

1
2%0 %o d interval {0, zq) (dashed line).

Equation (17) yields the tunnelling probability with the emission of two phonons.
The exponential factors in (16) and (17) for probabilitics of single- and two-phonon
processes differ in the numerical coefficient of the first component. This may be
interpreted as follows. The exponent in (16) may be calculated as the quasiclassical
probability of tunnelling through the barrier (figure 1). The barrier release at point
z, is associated with emission of a phonon with momentum Az, /A2 in the direction
perpendicular to the direction of tunnelling. For two-phonon emission the total shift
of the oscillator centre also does not exceed z, since the total phonon energy is
limited by E, — E,. However, owing to the two-fold release of the magnetic barrier,
(dashed line, figure 1), its effective height is reduced and the exponential multiplier
in (17) appears to be larger than in (16) by a factor of exp(xZ/4A?).

For the processes of tunnelling with absorption of one phonon and emission of
another phonon (the probability of which is described by (18)), the total shift of the
oscillator centre is not limited by A2(FE, — E,)/hs since the energy conservation
law now fixes the phonon energy difference rather than the phonon energy sum. The
increase in the total shift of the oscillator centre (proportional to the total momentum
transferred to the phonons) brings about a more effective suppression of the magnetic
barrier and hence a significant increase in the tunnelling probability. Yet, at low
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temperatures the probability of the absorption of a phonon with a large momentum
is exponentially small, the competition between the two factors leading to probability
(18). Note that processes involving both emission and absorption of phonons resuit in
an exponential gain in the tunnelling probability compared to single-phonon processes
even when ( E; — E,) — 0 (in contrast to processes with phonon entission only). For
instance, at sufficiently high temperature (when L, < d), WtY o exp(—d?/622).

The exponential increase in the tunnelling probability in transition from single-
to doubie-phonon processes illustrates the general fact noted in the introduction that
multiple scattering leads to a more effective suppression of the magnetic barrier.
Therefore, it is useful 1o obtain an expression for the probability of tunnelling involv-
ing an arbitrary number of phonons. The probability of a transition with absorption
of m phonons and emission of [ phonons is obtained by substituting the (m + {)th
term of series {13) into (12) and has the form

. m qu? i qu'_z 1 7
Wl{fé}oc!\z(m“)Zexp{—-z - —Z -)J —;m[(&?l—l'g'l'/\zgy)

9.q i=] - i=1 -

2 2 E.. s
= v = NQ.)) - S L6(E, - Byt By = Bu). 09

where RQ is the total momentum transferred to phonons:

] m
0=3¢ -3 q
i=1 i=1

and in (19) all the phonon energies are assumed to be greater than the temperature.
The main contribution to the hopping probability is made by phonons with small ¢,
which is taken into account in (19).

If the temperature is equal to zero, only processes with phonon emission are
possible and in (19) it should be assumed that m = 0 and £, = 0. The main
contribution to the integrai over g} is made by the processes for which qf ~¢;... =~
g ~ zy/ A%, the momenta of all the phonons directed approximately along vector
H x (p, — p,), Le. perpendicular to the tunnelling direction. Hence, the probability
of tunnelling with the emission of an arbitrary number of phonons may be estimated
as foliows:

=] oo 2
A0, z 1
W,_,= lz WD o Iz:amexp{ﬂg—)\%F - 5zld- :1:0)2}. (20)
=1 =1
The dimensionless constant « is proportiona) to the deformation potential A. Quan-
tity o? may be estimated} as the pre-exponent ratio in (17) and (16):
a? = 7 2EA% fa(d )P p,s AT E?
where it was assumed that d ~ 2, ~ \. At A = 7 eV, py =~ 5g em™3, s =
5x10% cms~!, A = 10~% cm and for binding energy E = 0.1/w, we get a? ~ 1073

104, At small values of the energy level difference, when z, < A In®/2(1/a), the

t Qur following results depend only on In(1/a). Henee, the strict definition of o (which cannot be
given in principle) is not necessary.
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value of summation (20) is determined by one of its terms; in the opposite limit the
summation may be substituted by the integral over {, following which we find

W,_, x exp{~2(zo/MIN2(1/a) — (1/22%)(d — z4)?}

(1)
for An®%(1/a) € =, < d.
At zy > d the probability of tunnelling ceases to increase exponentially and
W,_; x exp(—(2d/M)In*/%(1/a)). (22)

At sufficiently high temperatures, such that (d — z5) — Ly /2 3> X In'/*(1/a),
the most effective processes involve both emission and absorption of a large number
of phonons. In this case the tunnelling probability should be calculated by summing
(19) over m and [. The calculation s similar 1o that made above for m = 0 and
yiclds

d LT 1/21 LQT LT 1[21 (El _'E2)
—— | —= 2 — —i — - -
Wi 2<xexp{ A(2A+”ln c:)+8A'-’+ A In ot T 3)

As was noted in the introduction, multiphonon scattering causes suppression of the
component in the exponential factor (23) which is quadratic in d/A. When deriving
{23), it was assumed that the energy of each absorbed phonon is large compared to
the temperature. For this reason, (23) is valid at T < (As/A)In}/2(1/a).

So far in this section we have considered the case when E| > E,. The formulae
for the tunnelling probabilities when E, > E, may be obtained using the general
relationship for the probabilities of direct and reverse transitions.

W,_, = W,_ exp{(E, - E;)/T). o (24)

The expressions for the tunnelling probability given above may be used in studies
of two-dimensional hopping conductivity in a transverse magnetic field. Here we
restrict ourselves to calculation of the conductivity R7; of the element of the Miller—
Abrahams network (see, for example, section 4.2 of reference {1]). Following the
calculations made in [1] and using (24} we obtain

Ri} o W,_yexp(=(E, — E;)/2T ~ (|E; — ul + | E, - uf) /2T). (25)

Here p is the chemical potential and one of the expressions (16-18), (21-23) should
be substituted for tunnelling probability W, _,. For instance, for single-phonon pro-
cesses, from (16) and (25) we find

R7} o exp(=(23/2)%) — (d - 2)* /22
x exp(=(| B, = Byl + |Ey — ul + |Ey — p[)/27T). (26)
Note that, unlike the formula used previously {6], (26) takes into account the shift

of the oscillator centre by xy =A%|£; — E,|/fis upon emission (or absorption) of a
single phonon. This is likely to be most pronounced in hopping magnetoresistance
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in the region of intermediate magnetic fields (a < A <« v/Ra whete a is the Bohr
impurity radius and R is the mean impurity spacing).

Comparison between (16) and (18) shows that double-phonon processes make a
greater contribution to the tunnelling probability than single-phonon ones at suffi-
ciently high temperature

Lp < 2d -3z, — 26X In'/3(1/0). 2N

Hence, to observe multiphonon effects, it is essential that parameter d/\ should
be fairly great (e.g. d/A > /6 in'/*(1/a)), which is hardly realized in the known
experiments on hopping magnetoresistance. The appropriate condition, however, may
be realized in a specially prepared tunnel junction.

3. Tunnel junction in a transverse magnetic field

Let us consider the tunnel junction of two metallic conductors separated by a dielectric
interlayer. We will calculate the current passing in such a junction as a function of
temperature T and applied voltage V in the presence of a magnetic field H parallel
to the interlayer plane. Assume that the interlayer thickness < is large and its
related energy barrier Uy, is low so that the condition mw?d® > Uyt is fulfilled; this
means that the exponential suppression of the tunnelling current i5 mainly caused
by electrons overcoming the magnetic barricr {d > A). In [3] it was shown that
the presence of impurities in the interlayer facilitates tunnelling considerably due to
the release of the magnetic barrier on subbarrier scattering. As distinet from [3],
we assume here that the interlayer is free of impurities but that the leads contain
a random potential. Below it will be shown that the tunnelling current is mainly
related 1o the processes involving absorption and emission of phonons. Yet, first let
us consider the elastic tunneiling (phonon-free) processes that are important at fairly
low temperatures and voltages.

3.1. Dependence of elastic conductance on interlayer thickness

Let us describe the tunnel junction by means of the model Hamiltonian

ﬂ = ’RO + ?%imp (2'8)
Ho = (1/2m)(~IhV = (e/c)A) + U 8(z)0(d — z) (29)
Himp = Vi(1)8(~2) + Vo(r)0(z ~d) = =(p,2) (30)

where @(z) is the Heaviside function and the random potentials in the leads, V, ,,
are assumed to be delta-correlated:

VimV(r)) = mé(r —7) (Vo(r) Va(r")} = 71,807 — 7). (31}

t This condition can hardly be fulfilied in conventional MM tunnel junctions. However, we suppose that
the desired junction may be realized in a silicon MOSFET where the height of the barrier is adjusted by
the gate voltage. Another possibility is to make a Larrier of pure GaAs and the leads of heavily doped
(degenerate) GaAs.
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When choosing the vector potential in the Landau gauge, A = (0, Hz,0), the
eigenstates of Hamiltonian %, may be classified in accordance with coordinate X =
Ak, of the magnetic oscillator centre. Let us relate the states corresponding to
X < df2 to the left lead and the states with X > d/2 to the right lead. Assume
that the Fermi energy is smaller than the barrier height so that only states with X < 0
and X > d, are filled. Since the coordinate of the osciliator centre is the integral
of motion, then in the absence of perturbation H,,, the current is equal to zero.
In order to determine the dependence of conductance on interlayer thickness in the
presence of an impurity potential in the leads, we calculate the mean square of the
amplitudes of transitions from state X in the left lead to state X in the right lead
in the first two orders of the perturbation theory in ﬁimp:

Tzl = [ @ ()P a(r)P{1a8(=2) + 70z - )}

F [ @ & L EPO-2)otr P0G - Dlva(rP. (2

Here 4 and iy are the wavefunctions of states with oscillator centres X, and Xg;
g(r,v') is the Green function of the Schrodinger equation with Hamiltonian %, (29);
and the angular brackets denote averaging over the impurity potential. Considering
in (32) the asymptotic behaviour

oL RI? o exp(—(z - X1 g)*/A%) (33)

lg(r,+") e exp(—ip — p/17/22%) G4
for elastic conductance we obtain

Gu = &0, + 1a)e T/ 4 g, ype=d/2N, (35)

Dimension coefficients £ and &' take into account the densities of the states in the
leads and are independent of interlayer thickness 4. As seen from (33), two types of
the exponential dependence of elastic conductance on d are possible. If the impurity
potential is weak {+,, v, — 0), then the conductance is determined by the first term
in (35) corresponding to such scattering processes when, for instance, an electron is
scattered from the left jead to the right one on the right-lead impurity (see the first
component in (32)). In this case the thickness dependence, G, « exp(—d?/A?), is
determined by the asymptotic behaviour of the wavefunctions (33). If the impurity
potential is not too weak, the thickness dependence of conductance is determined
by the second term in (35} which corresponds to scattering processes on a pair of
impurities Jocated in the opposite leads of the junction. In this case dependence
G, = exp(—d?/2)?) is determined by the square of the modulus of the Green
function (34) calculated between two neighbouring points in the opposite leadst. It is
clear that at sufficiently high values of d/A the thickness dependence of conductance
(35) is determined by the second term.

Formulae (32), (35) take into account only the first two orders of the expansion of
the tunnelling amplitude in terms of the impurity potential. If the latter i not small,
account should also be taken of higher orders which, as can be seen, do not change
the exponential dependence of conductance on thickness, G, o exp(—d?/2)2?).

1 A similar relationship between conductance and the Green function was discussed in {3} for the case
of scattering by impurities in the interlayer.
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3.2 Conductance and the curreni-voltage characteristic in view of subbarrier scaitering
by phonons

In this section we calculate the differential conductance of the tunnel junction in
a magnetic field parallel to the interlayer as a function of two variables, namely
temperature and applied voltage. We will start with the standard expression

I= BZ[Wkpnk(l ) pknp(l nk)] (36)

rejating the current in the tunnel junction to the probabilities of transitions W, and
W, between electron states k and p of the left and right leads of the junction,
respectively. The dependence of the current on the voltage applied to the junction
is taken into account in (36) in the Fermi filling numbers n;, = np(E; —eV),n, =
ng(£,).

The processes of magnetic barrier release occurring due to scattering by phonons
are considered in transition probabilities W),,. As in section 3.1, transition amplitude
T, may be calculated in the second order of the perturbation theory in the impurity
potential in the leads, but in an arbitrary order with respect to the electron-phonon
interaction. Then for the impurity-averaged squarc of the transition amplitude with
absorption of phonons gy, ...,q,, and emission of phonons ¢{,...,q we obtain an
expression coinciding with the second term in (32) where the Green function g(r,»')
is replaced by the matrix element of the operator Green function:

(i Ny, = 1) oo Ny = 1) (N + 1) o (N + 1)1/ (B, = H)
X P Ny o Ny Ngio N 37y

Here 7 = Hy + Hy + He_py (29), (11), (14). Expanding (37) in a power series of
?i’e_ph, it can be verified easily that (37) coincides (within the accuracy of insignificant

pre-exponential factors) with the matrix element of the T-operator (12) for the tran-
sition between states localized on impurity centres situated at points » and »’. Hence,
calculating the current using (36), we will use for W, the expressions obtained in
section 2 for the probability W,_, of transition between localized states. In doing
so, energies £, and E, should be substituted by £} and E and d should mean
interlayer thickness rather than centre spacing.

3.2.1. Non-linear differential conductance at T = 0. Let us calculate the conductance,
G(V'), of the tunnel junction at zero temperature when, besides elastic tunneiling,
only phonon emission processes are possibie. Differentiating (36) at T = 0 with
respect to V', we obtain

G(Vy=e*d W,,(1-n,)8(E, —eV). (38)
kp
As shown in section 2, the hoppiing probability increases exponentially with an in-
crease in the energy difference between the initial and final states due to a greater
shift ¢, of the oscillator centre upon phonon emission. Since the maximum value of
energy difference E) — E, in (38) is eV, the estimation

eV . a

DY - sate- ¥ o

Go(VYx Wy E.-E evocZa'fexp{ (
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is valid for the inelastic contribution to conductance within an exponential accuracy
(20). The total conductance, G(V'), is the sum of inelastic and elastic contributions;
the latter, as shown in section 3.1, taking the form G4 o« exp(—d?/2)?) and being
free of an exponential voltage dependence. At voltages |eV| > 2(As/d)In(1/«) the
inelastic contribution exceeds the elastic one and conductance starts to increase expo-
nentially with voltage. As the voltage increases, the processes with emission of 1,2,3,...
phonons are sequentially initiated. At voltages greater than (As/ le{)\)lnaj %(1/ o) de-
pendence (39) has an asymptotic form

Gp(V) x exp{—2A(leV|/hs) /3 (1/a) — (1/2X%)(d — A%jeV/As)’}.  (40)

The exponential increase of conductance continues up to voltage |eV*| = hsd/X? at
which the processes with oscillator centre shift z, = d are allowed and estimation
{5) is valid for conductance.

3.2.2. Temperature dependence of linear conductance. Let us calculate the temperature
dependence of conductance G(T') in the linear regime, eV <« T [5]. Differentiating
current (36) with respect to V in this limit, we find

G(T) = % L_ZW,;Pnku -n,). (41)

Expanding hopping probability W, in a power serics of the electron—phonon inter-
action constant, linear conductance may be presented as

G(T) = Gy+ GINT) + GO(T) ... (42)

where G(1), G ... are the contributions to conductance caused by the processes
involving 1,2,... phonons. At a small electron-phonon interaction constant o (and not
too large interlayer thickness d) the temperature dependence of linear conductance
i determined by several corrections in (42). Using (16) for the hopping probability
with the emission of one phonon and relationship (24) from (41) we obtain

o?exp(— ‘f.;) Le>d

T
ofexp(—dy + 22TV Lo < d

[

G T x { (43)

From (43) it is seen that at T < fs/d no effects of magnetic barrier release are
exhibited. This is due to the fact that the tunnelling processes involving phonons with
large momenta are suppressed at low temperatures,

Substituting (17) and (18) into (41), we find the second correction:

atexp(— ) Ly >2d

44
otexp (-—.‘,—d\; + ——5—-[‘1_:‘:‘_{"’2—)72) Ly < 2d. @9

G(T) x {

Note that the exponential increase of correction G'*) starts at threshold temperature

T, = hs/2d (43)
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when correction G(') is still independent of temperature, Therefore, both corrections
(43) and (44) should be considered when investigating the temperature dependence
of linear conductance at small ¢,

If constant « is not too small, inelastic processes involving 3,4,5... phonons
are initiated with increasing temperature. At sufficiently high temperature, when
T-T, > T,(A/d) n*?(1/a), conductance is determined by multiphonon processes
and its temperature dependence found by means of (23), (41) takes the form

G(T) x exp[~(d/X)((Lp/2)) + 2% (1/a)) + (LE/8AF)
4+ (LX) 3(1/a)]. (46)

At T ~ (hs/X) In'/?(1/a), the G(T) dependence is saturated at value (5).

3.2.3. Non-linear conductance at finite temperatures. In sections 3.2.1 and 3.2.2 con-
ductance was studied at T= 0 and T > [eV| It is of interest, however, that at
not very high voltages (V' < hsd/[e[A?) a pronounced temperature dependence also
exists within the temperature range hs/d < T' < |eV|. Using (16) and (36) for a
single-phonon contribution to conductance at (7" and V/ different from zero), we find

o

AleV ? d-A? .
1 azexp{_ m?/as) { \qge‘\»;ws)) } Ly > d— 20V
GUNT, V) )
d— L
a"’exp{—gd;-_r+£-4-x;—}exp ('E’Tv[) LT<d-—-2)\2L%‘-:-l-
(47)

It can be readily seen that at T = 0 equation (47) coincides with the first term
of series (39) and at V = O it coincides with (43). The exponential temperature
dependence within the range T < |eV/] is conditioned by the fact that at T > 0
tunnelling processes involving emission of a phonon with energy exceeding |eV'| are
allowed; this brings about a shift of the oscillator centre greater than that at T = 0.

For multiphonon contributions to conductance, the temperature dependence at
T < |eV] is largely due to the possibility of increasing the total shift of the oscillator
centre at the expense of the combined processes involving both emission and ab-
sorption of phonons. For instance, for the contribution of combined double-phonon
processes to conductance, from (18) and (36) we obtain

GO(T,V)
e —xzlevl
ot exp{- 4 (5¥)" - L5 ) Ly >2d-3)21eY
otexp{-f+ UgE Pl L gl - 25} Lp<2a-2gM 69
|eVIT < (52)%

At V = ( equation (48) coincides with (44). At low temperatures, T < hs/d, besides
(48), account should also be taken of the contribution made by the processes involving
the emission of two phonons (described by the second term of series (39)). Note
that the temperature-dependent double-phonon contribution (48) starts increasing
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abruptly at lower temperatures than the single-phonon contribution (47). Hence,
generally speaking, both contributions should be taken into account even at small a.

For the case where the electron-phonon interaction constant is not too small,
combined processes involving emission and absorption of a large number of phonons
become important with increasing temperature. Their contribution to conductance
may be found by means of (23) and (36) and has the form

G(V,T) o« exp{—~(d/M{((Lp/22) + 2 n'/2(1 fo)) + (L3 /8)%)
4+ (Lp/2) In2(1/a)} exp(jeV]/2T). ' (49)

Formula (49) is valid at d — |[eV|\3/hs — Lo/2 > X h¥%(1/0),T <
(hs/Mn*/%(1/a). At T ~ (hs/A)n'/*(1/a) conductance is saturated at value
(5) irrespective of applied voltage. Combined processes are insignificant in the re-
gion of the vajues of V and T such that d — |eV|A®/hs — Lyp/2 < 0. In this case
conduciance is determined by the tunneiling processes involving emission of phonons
and is described by (41).

4. Phonon-assisted transitions between the edge states in 2D ballistic structure

Buttiker’s approach [7], based on the consideration of edge states, has been widely
used to describe the experiments on the intcger quantum Hall effect. In [8,9] it
bas been shown that electron transitions between different edge states may lead to
deviation of the Hall resistance from the quantized value, Two situations are possible:
(i) transitions occur between two differcnt edge states located near to one sample
boundary and (ii) transitions between the edge states located near opposite sample
boundaries. Numerous experiments on measuring the length of time to establish
equifibrium between initially non-equilibrium populated edge states correspond to
the first case [10,11]. If the confining potential is fairly smooth, then the distance
d between two neighbouring edge states may appear to be much larger than the
magnetic length (for instance, estimation d/X ~ 5.2 was obtained in {10]). In the
second case, when transitions between states located at different edges of the sample
are considered, d is determined by the sample width and, hence, it is also large
compared to A. It would be expected that for d 3> A in a sufficiently pure sample
transitions between cdge states arc accomplished mainly due o the processes involving
a single or several phonons,

In this section we calculate to an exponential accuracy the current passing between
two edge states as a function of temperature 7 and the difference of their electro-
chemical potentials Ay (the current being due to the scattering processes involving
one or two phonons). It is assumed that impurities are absent so that the wavevector
along the boundary is conserved.t

The contribution to current caused by single-phonon processes is determined by
the expression

= Jyexp(=d /20 exn{ (55 — 1aup/ T (50)

t In the case of rough boundaries, the problem on scatlering between edge states located near opposite
sample boundaries is redured (o the problem considered in section 3.
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At Ap — 0 this expression was obtained in {12,13], where pre-exponential factor
J, (proportional to the square of the electron-phonon interaction constant) was
also calculated. In (50) it is assumed that d > A, |Au]l < Asd/A? and T K
hsd /X%, The occurrence of the exponential temperature dependence in (50) is related
to the fact that owing to the conservation of the wavevector along the boundary
upon scattering, the main contribution to current is made by the processes involving
emission of phonons with energy hsd/A% The last multiplier in (50) describes the
small probability of finding the unoccupied final state whose energy is below the
corresponding electrochemical potential by (Asd/A? — |Apul). At |Ap| > ksd/A?
equation (50) is free of the last multiplier and spontaneous phonon emission is
possible at any temperature [10].

Two contributions to current related to double-phonon processes may be dis-
cerned. The first is due to scattering between edge states involving emission of two
phonons and takes the form

I, = Jyexp(—d®/47Y) exp{—(ﬁfgd - IAp])/T}. 1)

This expression is quite analogous to (50) but distinguished from it by pre-exponential
factor J,, which is proportional to the fourth power of the electron-phonon inter-
action constant, and a less pronounced dependence on d associated with a more
effective suppression of the magnetic barrier. The second contribution is related to
the combined processes when one phonon is absorbed and the other is emitted, and
takes the form

Ih = Jhexp(—d®/42%) exp(—hsd/2N*T)F(Au,T) (52)
43 B a {4 2
exp {$pl - ML |au|T < (hs/A)?
Flau,T) = (hoy?
exp { F2 | ARIT > (hs/AY?

Comparison of (50} and (52) in the simplest case (|Ap| — 0) shows that the corre-
sponding exponential temperature dependences are significantly different: the activa-
tion energy corresponding to the double-phonon processes is haif as large. This is due
1o the fact that the main contribution to current is made by the combined processes
in which the wavevectors of both the emitted and the absorbed phonons are equal in
magnitude 10 /2% so that the iemperature dependence of the contribution to the
current (52) at |[Ap} — 0 is governed only by the small probability of absorption of
a phonon with energy fisd/2X* Therefore, measurement of the activation energy in
the temperature dependence of the inverse length of edge state population relaxation
at [Ap} « T may be recommended for experimental observation of double-phonon
processes. The estimations show, in the case of GaAs (and also when considering
pre-exponent factors for the deformation potential interaction), that one- and two-
phonon contributions to the scattering rate between edge states related to the zeroth
and first Landau levels for H = 3.7 T become equal at T =~ 0.8-1.6 K for d/A =
4-5.
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