Argonne National Laboratory

Materials Science Division

Argonne Home > MSD > Personnel
Dr. Serge Nakhmanson
Materials Science Division
Argonne National Laboratory
9700 South Cass Avenue,
Bldg. 212 Argonne,
IL 60439-4838
Phone: (630) 252–5205
Fax: (630) 252–4798
E-mail: nakhmanson@anl.gov



CITIZENSHIP:
Russian; permanent resident of the US

PROFESSIONAL EXPERIENCE:
2006–present Assistant Scientist, Interfacial Materials Group
Materials Science Division, Argonne National Laboratory
2004–2006 Postdoctoral Research Associate, Rutgers University
Advisors: K. M. Rabe and D. Vanderbilt
Research Area: Ab initio assisted modelling of structural and polar
properties of perovskite and polymer ferroelectrics.
2001–2004 Postdoctoral Research Associate, NCState University
Advisor: J. Bernholc
Research Area: First-principles studies of polarization in III-V nitrides, nanostructures and polymers.
1997–2001 Ph.D., Physics, Ohio University
Thesis: Theoretical studies of amorphous and paracrystalline silicon
Thesis advisor: D. A. Drabold
1994–1996 M.Sc., Physics (with honors), St-Petersburg State University, Russia
Thesis: Paired states in homogeneous low-density electron gas


MEMBERSHIPS:
American Physical Society Referee activities: DoE, Phys. Rev. B, Phys. Rev. Lett., Appl. Phys. Lett., Nature Materials, J. Phys. Chem. Solids, etc.

PEER REVIEWED JOURNALS:
[1] S. M. Nakhmanson, A. Vashuta, I. V. Abarenkov, Paired states in homogeneous low-density electron gas, Vestnik SPbSU (1997).
[2] S. A. Nemov, V. I. Proshin, S. . Nakhmanson, E?ect of In doping on the kinetic coe?cients

n
in solid solutions of the system PbzSn1-z Ge0.05Te, Semiconductors 32, 1062 (1998).
0.95
[3] S. Nakhmanson and D. A. Drabold, Approximate ab initio calculation of vibrational properties of hydrogenated amorphous silicon with inner voids, Phys. Rev. B58, 15325 (1998).
[4] P. A. Fedders, D. A. Drabold and S. Nakhmanson, Theoretical study on the nature of band-tail states in amorphous Si, Phys. Rev. B58, 15624 (1998).
[5] D. A. Drabold, U. Stephan, J. Dong and S. Nakhmanson, Electronic structure of amorphous silicon, J. Mol. Graphics Mod. 17, 285, (1999).
[6] S. Nakhmanson and D. A. Drabold, Computer simulation of low-energy excitations in amor¬phous silicon with voids, J. Non-Cryst. Sol. 266–269, 156 (2000).
[7] S. Nakhmanson and D. A. Drabold, Low-temperature anomalous speci?c heat without tunneling modes: a simulation for a-Si with voids, Phys. Rev. B61, 5376 (2000).
[8] S. Nakhmanson, P. M. Voyles, N. Mousseau, G. T. Barkema and D. A. Drabold, Realistic Models of Paracrystalline Silicon, Phys. Rev. B63, 235207 (2001).
[9] P. M. Voyles, N. Zotov, S. M. Nakhmanson, D. A. Drabold, J. M. Gibson, M. M. J. Treacy, P.
J. Keblinski, Structure and Physical Properties of Paracrystalline Atomistic Models of Amor¬phous Silicon, J. Appl. Phys. 90, 4437 (2001).
[10] S. Nakhmanson, N. Mousseau, G. T. Barkema, P. M. Voyles and D. A. Drabold, Models of Paracrystalline Silicon with a Defect-Free Bandgap, Intl. J. Mod. Phys. B15 3253 (2001).
[11] N. Mousseau, G. T. Barkema and S. M. Nakhmanson, Recent developments in the study of continuous random networks, Philos. Mag. B82, 171 (2002).
[12] S. M. Nakhmanson and N. Mousseau, Crystallization study of model tetrahedral semiconduc¬tors, J. Phys.: Condens. Matter 14, 6627 (2002).
[13] S. M. Nakhmanson, D. A. Drabold and N. Mousseau, Comment on "Boson peak in amorphous silicon: A numerical study", Phys. Rev. B66, 087201 (2002).
[14] J. Fabian, J. L. Feldman, C. Stephen Hellberg, and S. M. Nakhmanson, Numerical study of anharmonic vibrational decay in amorphous and paracrystalline silicon, Phys. Rev. B67, 224302 (2003).
[15] S. M. Nakhmanson, A. Calzolari, V. Meunier, J. Bernholc and M. Buongiorno Nardelli, Spon-taneous polarization and piezoelectricity in boron nitride nanotubes, Phys. Rev. B67, 235406 (2003).
[16] S. M. Nakhmanson, M. Buongiorno Nardelli and J. Bernholc, Ab initio studies of polarization and piezoelectricity in vinylidene ?uoride and BN-based polymers, Phys. Rev. Lett. 92, 115504 (2004).
[17] S. V. Khare, S. M. Nakhmanson, P. M. Voyles, P. Keblinski, and J. R. Abelson, Evidence from atomistic simulations of ?uctuation electron microscopy for preferred local orientations in amorphous silicon, Appl. Phys. Lett. 85, 745 (2004).
[18] S. V. Khare, S. M. Nakhmanson, P. M. Voyles, P. Keblinski, and J. R. Abelson, Evidence from simulations for orientational medium range order in ?uctuation-electron-microscopy observa¬tions of a-Si, Microsc. Microanal. 10 (Suppl 2), 820 (2004).
[19] J. Bernholc, S. M. Nakhmanson, M. Buongiorno Nardelli, and V. Meunier, Understanding and enhancing polarization in complex materials, Comput. Sci. Eng. 6, 12 (2004).
[20] S. M. Nakhmanson, K. M. Rabe, and D. Vanderbilt, Polarization enhancement in two-and three-component ferroelectric superlattices, Appl. Phys. Lett. 87, 102906 (2005).
[21] S. M. Nakhmanson, M. Buongiorno Nardelli, and J. Bernholc, Collective polarization e?ects in ß-polyvinylidene ?uoride and its copolymers with tri-and tetra?uoroethylene, Phys. Rev. B72, 115210 (2005).
[22] S. M. Nakhmanson, K. M. Rabe, and D. Vanderbilt, Predicting polarization enhancement in multicomponent ferroelectric superlattices, Phys. Rev. B73, 060101(R) (2006).
[23] D. A. Tenne, A. Bruchhausen, N. D. Lanzillotti Kimura, A. Fainstein, R. S. Katiyar, A. Cantarero, A. Soukiassian, V. Vaithyanathan, J. H. Haeni, W. Tian, D. G. Schlom, K. J. Choi, D. M. Kim, C.-B. Eom, H. P. Sun, X. Q. Pan, Y. L. Li, L. Q. Chen, Q. X. Jia, S.
M. Nakhmanson, K. M. Rabe, and X. X. Xi, Probing nanoscale ferroelectricity by ultraviolet Raman spectroscopy, Science 313 1614 (2006).
[24] J. Bernholc, W. Lu, S. M. Nakhmanson, P. H. Hahn, V. Meunier, M. Buongiorno Nardelli,
W. G. Schmidt, Atomic scale design of nanostructures, Mol. Phys. 105, 147 (2007).
[25] H. N. Lee, S. M. Nakhmanson, M. F. Chisholm, H. M. Christen, K. M. Rabe, and D. Vander¬bilt, Suppressed Dependence of Polarization on Epitaxial Strain in Highly Polar Ferroelectrics, Phys. Rev. Lett. 98, 217602 (2007).
[26] D. A. Tenne, I. E. Gonenli, A. Soukiassian, D. G. Schlom, S. M. Nakhmanson, K. M. Rabe,
X. X. Xi, Raman study of oxygen reduced and re-oxidized strontium titanate, Phys. Rev. B76, 024303 (2007).
[27] S. M. Nakhmanson, Revealing latent structural instabilities in perovskite ferroelectrics by lay¬ering and epitaxial strain: a ?rst-principles study of Ruddlesden-Popper superlattices, Phys. Rev. B78, 064107 (2008).


CHAPTERS:
[1] D. A. Drabold, S. Nakhmanson and X. Zhang, Electronic structure of amorphous insulators and photostructural e?ects in chalcogenide glasses, in "Properties and Applications of Amor¬phous Materials," M. Thorpe and L. Tichy, Eds., Kluwer (2001).
[2] M. Buongiorno Nardelli, S. M. Nakhmanson, V. Meunier, Polarization in nanotubes and nan-otubular structures, in "Nanoengineering of Structural, Functional, and Smart Materials," M.
J. Schulz, A. Kelkar and M. J. Sundaresan, Eds., CRCPress (2005).


CONFERENCE PROCEEDINGS:
[1] J. Bernholc, M. Buongiorno Nardelli, W. Lu, V. Meunier, S. Nakhmanson and Q. Zhao, Sim¬ulations of nanotube-based structures and devices, Proc. Conf. on Foundations of Nanoscience: Self-assembled Architectures and Devices, Science Technica, 367 (2004).
[2] J. Bernholc, M. Buongiorno Nardelli, W. Lu, V. Meunier, S. M. Nakhmanson, and Q. Zhao, Large-scale quantum-mechanical simulations of nanoscale devices and new materials, Proceed-ings of DoD 2004 Users Group Conference, IEEE Computer Society, 34 (2004).
[3] J. Bernholc, W. Lu, S. M. Nakhmanson, V. Meunier, and M. Buongiorno Nardelli, Multiscale simulations of quantum structures, Proceedings of DoD 2005 Users Group Conference, IEEE Computer Society, 18 (2005).
[4] J. Bernholc, M. Buongiorno Nardelli, W. Lu, V. Meunier, S. M. Nakhmanson, and Q. Zhao, Atomic scale design of nanostructures, Proc. Indo-US workshop on "Nanoscale Materials: From Science to Technology," S. N. Sahu, R. K. Choudhury, and P. Jena, Eds., Nova Science Publishers, (2006).


INVITED TALKS:
1 Designing novel polar materials through computer simulations, Mardi Gras Physics conference, Baton Rouge, LA, February 2003.
2 Design of new ferroelectric polymers through computer simulations, 16-th Annual Workshop on Recent Developments in Electronic Structure Methods, New Brunswick, NJ, May 2004.
3 Understanding, enhancing and ?ne-tuning polar properties in multicomponent perovskite su-perlattices, APS March Meeting, Denver, CO, March 2007.

Contributed:
1 Vibrational signatures of void-type defects in amorphous silicon, APS March Meeting, Atlanta, GA, March 1999.
2 Computer simulation of low-energy excitations in amorphous silicon, ICAMS18, Snowbird, UT, August 1999.
3 Computer simulation of low-energy excitations and speci?c heat in a-Si, Annual Midwest Solid State Conference, Ohio University, Athens, OH, October 1999.
4 Computer simulation for the low-temperature anomalous speci?c heat in amorphous silicon with voids, APS March Meeting, Minneapolis MN, March 2000.
5 Models of Paracrystalline Silicon with a Defect-Free Bandgap, Annual Midwest Solid State Conference and Solid State Theory Symposium, University of North Dakota, Grand Forks, ND, October 2000.
6 Realistic Models of Paracrystalline Silicon, APS March Meeting, Seattle, WA, March 2001.
7 Spontaneous polarization and piezoelectric response in BN nanotubes, APS March Meeting, Indianapolis, IN, March 2002.
8 Spontaneous polarization and piezoelectric properties of boron-nitride nanotubes, Nanotube 2002, Boston College, Boston, MA, July 2002.
9 Polar properties of ferroelectric polymers from the ?rst principles, APS March Meeting, Austin, TX, March 2003.

10. Superpolar polymers by design, Workshop on Fundamental Physics of Ferroelectrics, Williams-burg, VA, February 2004.
11. Superpolar polymers by ?rst principles design, APS March Meeting, Montreal (Quebec), Canada, March 2004.
12. Polarization enhancement in two-and three-component ferroelectric superlattices, Workshop on Fundamental Physics of Ferroelectrics, Williamsburg, VA, February 2005.
13. First principles studies of self-polarization in electroactive polymers, APS March Meeting, Los Angeles, CA, March 2005.
14. Polarization enhancement in two-and three-component ferroelectric superlattices, 17-th An¬nual Workshop on Recent Developments in Electronic Structure Methods, Ithaca, NY, June 2005.
15. Polarization enhancement in two-and three-component ferroelectric superlattices, 203-th Na¬tional ACS Meeting, Washington, DC, August 2005.
16. Predicting polarization enhancement in multicomponent ferroelectric superlattices, Workshop on Fundamental Physics of Ferroelectrics, Williamsburg, VA, February 2006.
17. Revealing the hidden polar character of CaT iO3 (with A. Zayak), Workshop on Fundamental Physics of Ferroelectrics, Williamsburg, VA, February 2006.
18. Weak strain-polarization coupling and ferroelectricity in epitaxially strained PZT (ultra)thin ?lms (with H. N. Lee), Workshop on Fundamental Physics of Ferroelectrics, Williamsburg, VA, February 2006.
19. Predicting polarization enhancement in multicomponent ferroelectric superlattices, APS March Meeting, Baltimore, MD, March 2006.
20. Strain-polarization coupling in epitaxial perovskites: A comparison between A-site and B-site driven ferroelectrics (with H. N. Lee), Workshop on Fundamental Physics of Ferroelectrics, Williamsburg, VA, February 2007.
21. Critical thickness for ferroelectricity in ultrathin perovskite ?lms with inequivalent electrodes Workshop on Fundamental Physics of Ferroelectrics, Williamsburg, VA, February 2008.
22. Competing structural instabilities in Ti-based layered-perovskite-oxide superlattices APS March Meeting, New Orleans, LA, March 2008.


SEMINARS AND COLLOQUIUMS:
1. Paired states in homogeneous low-density electron gas, Steklov Institute of Mathematics (St-Petersburg department), St-Petersburg, Russia, 1996.
2. Realistic Models of Paracrystalline Silicon, CMSSSeminar, Department of Physics & Astron¬omy, Ohio University, Athens, OH, February 2001.
3. Realistic Models of Paracrystalline Silicon, Department of Materials Science & Engineering, UIUC, Urbana, IL, November 2001.
4. Spontaneous polarization and piezoelectricity in boron-nitride nanotubes, Condensed Matter Seminar, Department of Physics, Universite de Montreal, Montreal (Quebec), Canada, Octo¬ber 2002.
5. Designing new polar materials on a computer, CMSS seminar, Department of Physics & As-tronomy, Ohio University, Athens, OH, March 2003.
6. Designing new polar materials on a computer, Department of Semiconductor Physics and Nanoelectronics, St-Petersburg State Technical University, St-Petersburg, Russia, June 2003.
7. Designing new polar materials on a computer, Steklov Institute of Mathematics (St-Petersburg department), St-Petersburg, Russia, June 2003.
8. New piezoelectric and pyroelectric materials by ?rst principles design, Center for Computa¬tional Materials Science, Naval Research Lab, Washington DC, October 2003.
9. Design of new ferroelectric polymers through computer simulations, Department of Physics and Astronomy, University of Nebraska, Lincoln, NE, April 2004.
10. Design of new ferroelectric polymers through computer simulations, Department of Physics, Ohio State University, Columbus, OH, April 2004.
11. Design of new ferroelectric polymers through computer simulations, Department of Physics and Astronomy, Rutgers, Piscataway, NJ, April 2004.
12. Ab initio studies and design of ferroelectric polymers, Steklov Institute of Mathematics (St-Petersburg department), St-Petersburg, Russia, June 2005.
13. Ab initio studies and design of ferroelectric-polymer materials, CMSS seminar, Department of Physics & Astronomy, Ohio University, Athens, OH, October 2005.


14. First-principles studies of polarization control and enhancement in novel ferroelectric materi¬als, Argonne National Lab, Argonne, IL, March 2006.
15. First-principles studies of polarization control and enhancement in novel ferroelectric materi¬als, Auburn University, October 2006.
16. Understanding, enhancing and ?ne-tuning polar properties in multicomponent perovskite ma¬terials, MSD Colloquium, Argonne National Lab, Argonne, IL, June 2007.



UChicago Argonne LLC
Privacy & Security Notice | Contact Us | Site Map |